《难点详解北师大版八年级数学下册第三章图形的平移与旋转定向攻克试题(名师精选).docx》由会员分享,可在线阅读,更多相关《难点详解北师大版八年级数学下册第三章图形的平移与旋转定向攻克试题(名师精选).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图形中既是中心对称图形又是轴对称图形的是( )ABCD2、下列各APP标识的图案是中心对称图形的是()A
2、BCD3、下列图中,既是轴对称图形又是中心对称图形的是()ABCD4、如图,在ABC中,BAC108,将ABC绕点A按逆时针方向旋转得到,若点刚好落在BC边上,且,则C的度数为()A22B24C26D285、已知点关于原点的对称点在一次函数的图象上,则实数的值为( )A1B-1C-2D26、下列标志是中心对称图形,但不是轴对称图形的是( )ABCD7、如图,的顶点坐标为,若将绕点按顺时针方向旋转90,再向左平移2个单位长度,得到,则点的对应点的坐标是( )ABCD8、下列图形中,是中心对称图形的是()ABCD9、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为
3、点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5)已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则ABC的面积是()A12B14C16D1810、如图,将绕点逆时针旋转55得到,若,则的度数是( )A25B30C35D75第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A(3,1)绕原点逆时针旋转180得到的点A的坐标是 _2、正方形ABCD在坐标系中的位置如图所示A(0,3),B(2,4),C(3,2),D(1,1
4、0)将正方形ABCD绕D点旋转90后,点B到达的位置坐标为_3、如图所示,把图中的交通标志图案绕它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 _4、如图所示,ABC经过平移得到ABC,图中_与_大小形状不变,线段AB与AB的位置关系是_,线段C C与B B的位置关系是_5、如图,在ABC中,CAB62,将ABC在平面内绕点A旋转到ABC的位置,使CCAB,则旋转角的度数为 _三、解答题(5小题,每小题10分,共计50分)1、如图,ABC顶点的坐标分别为A(1,1),B(4,1),C(3,4)将ABC绕点A逆时针旋转90后,得到AB1C1在所给的直角坐标系中画出旋转后的AB1C1,并直
5、接写出点B1、C1的坐标:B1( , );C1( , )2、如图,在方格纸中,每个小正方形的边长为一个长度单位,点A、B、C都在格点上(1)画出线段BC;(2)将线段BC向上平移三个单位,得到线段DE,在图中画出线段DE;(3)三角形ADE的面积= 3、如图,三角形的项点坐标分别为,(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90后的,并写出点的坐标4、如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,1)(1)在如图的方格纸中把AB
6、C以点O为位似中心扩大,使放大前后的相似比为1:2,画出A1B1C1,并标出A1B1C1外接圆的圆心P,直接写出P点的坐标(ABC与A1B1C1在位似中心O点的两侧,A,B,C的对应点分别是A1,B1,C1)(2)作出ABC绕点C逆时针旋转90后的图形A2B2C,并求出点B经过的路径长(结果保留根号和)5、如图1,平面直角坐标系中,直线yx+m交x轴于点A(4,0),交y轴正半轴于点B,直线AC交y轴负半轴于点C,且BCAB(1)求线段AC的长度(2)P为线段AB(不含A,B两点)上一动点如图2,过点P作y轴的平行线交线段AC于点Q,记四边形APOQ的面积为S,点P的横坐标为t,当S时,求t的
7、值M为线段BA延长线上一点,且AMBP,在直线AC上是否存在点N,使得PMN是以PM为直角边的等腰直角三角形?若存在,直接写出点N的坐标;若不存在,请说明理由-参考答案-一、单选题1、D【分析】根据轴对称图形与中心对称图形的概念,并结合选项中图形的特点即可选择【详解】解:A、是轴对称图形,不是中心对称图形,故该选项不符合题意;B、不是轴对称图形,是中心对称图形,故该选项不符合题意;C、是轴对称图形,不是中心对称图形,故该选项不符合题意;D、是轴对称图形,是中心对称图形,故该选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合
8、;中心对称图形关键是要寻找对称中心,图形旋转180后与原图重合2、C【分析】根据中心对称图形的概念对各选项分析判断即可得解【详解】A、图形关于中心旋转180不能完全重合,所以不是中心对称图形,故本选项不符合题意;B、图形关于中心旋转180不能完全重合,所以不是中心对称图形,故本选项不符合题意;C、图形关于中心旋转180能完全重合,所以是中心对称图形,故本选项符合题意;D、图形关于中心旋转180不能完全重合,所以不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合3、D【分析】根据轴对称图形与中心对称图形的概念求
9、解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合4、B【分析】根据图形的旋转性质,得ABAB,已知ABCB,结合等腰三角形的性质及三角形的外角性质,得B、C的关系即可解决问题【详解】解:ABCB,CCAB,ABBC+CAB2C,将ABC绕点A按逆时针
10、方向旋转得到ABC,CC,ABAB,BABB2C,B+C+CAB180,3C180108,C24,故选:B【点睛】本题主要考查了等腰三角形的性质及图形的旋转性质,得B、C的关系为解决问题的关键5、B【分析】求出点关于原点的对称点的坐标,代入函数解析式中求解即可【详解】解:点关于原点的对称点的坐标为(-2,3),代入得,解得,故选:B【点睛】本题考查了关于原点对称的点的坐标特征和待定系数法,解题关键是求出对称点的坐标,熟练运用待定系数法求值6、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;B、不是轴对称图形,不是中心对称图形,故
11、此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合根据轴对称图形和中心对称图形的概念对选项进行一一分析即可得到答案7、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化旋转,解题的关键是理解题意,学会利用图象法解决问题8、D【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与
12、原来的图形重合,那么这个图形就叫做中心对称图形【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键9、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到ACB90,延长BC交x轴于点E,过C点作CFAE于点F,根据待定系数法得出直线的解析式进而解答即可【详解】解:连接CQ,如图:由中心对称可知,AQBQ,由轴对称可知:BQCQ,AQCQBQ,QACACQ,QBCQCB,QAC+AC
13、Q+QBC+QCB180,ACQ+QCB90,ACB90,ABC是直角三角形,延长BC交x轴于点E,过C点作CFAE于点F,如图,A(2,0),C(8,6),AFCF6,ACF是等腰直角三角形,AEC45,E点坐标为(14,0),设直线BE的解析式为ykx+b,C,E点在直线上,可得:,解得:,yx+14,点B由点A经n次斜平移得到,点B(n+2,2n),由2nn2+14,解得:n4,B(6,8),ABC的面积SABESACE12812612,故选:A【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到的坐标是解本题的关键10、C【分析】由旋转的性质
14、可得出答案【详解】解:将OAB绕点O逆时针旋转55后得到OCD,AOC=55,AOB=20,BOC=AOC-AOB=55-20=35,故选:C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等二、填空题1、(3,1)【分析】由条件可知A点和A点关于原点对称,可求得答案【详解】解:将OA绕原点O逆时针旋转180得到OA,A点和A点关于原点对称,A(3,1),A(3,1),故答案为:(3,1)【点睛】本题主要考查旋转的定义,由条件求得A和A关于原点对称是解题的关键2、 (4,0)或(2,2)【分析】利用网格结构找出点B绕点D旋转
15、90后的位置,然后根据平面直角坐标系写出点的坐标即可【详解】解:如图,点B绕点D旋转90到达点B或B,点B的坐标为(4,0),B(2,2)故答案为:(4,0)或(2,2)【点睛】本题主要考查了坐标与图形变化旋转,解题的关键在于能够利用数形结合的思想进行求解3、120度【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故答案为:120【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键4、ABC ABC 平行 平行 【分析】根据平移的性质:经过平移,对应线段平行且相等,对应角相等,对应
16、点所连接的线段平行且相等,平移不改变图形的形状、大小和方向,进行求解即可【详解】解:是ABC经过平移得到的,图中ABC与大小形状不变,线段AB与线段的位置关系式平行,线段与线段的关系式平行,故答案为:ABC,平行,平行【点睛】本题主要考查了平移的性质,解题的关键在于能够熟练掌握平移的性质5、56【分析】先根据平行线的性质得ACCCAB62,再根据旋转的性质得CAC等于旋转角,ACAC,则利用等腰三角形的性质得ACCACC62,然后根据三角形内角和定理可计算出CAC的度数,从而得到旋转角的度数【详解】解:CCAB,ACCCAB62ABC在平面内绕点A旋转到ABC的位置,CAC等于旋转角,ACAC
17、,ACCACC62,CAC180ACCACC18026256,旋转角为56故答案为56【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等三、解答题1、画图见解析;B1(1,2);C1(4,1)【分析】图形绕点A逆时针旋转90,将AB,AC逆时针旋转90,得到,连接, 利用网格特点和旋转的性质得出点B1、C1的坐标,从而得到AB1C1【详解】如图所示,AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1)故答案为(1,2),(4,1)【点睛】本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和
18、网格特征,即可得到对应坐标点2、(1)见解析;(2)见解析;(3)8【分析】(1)连接B、C两点即可;(2)根据平移的定义,得出对应点的位置,连接即可;(3)根据三角形的面积公式计算即可【详解】解:(1)线段BC如图所示,(2)线段DE如图所示,(3)三角形ADE的面积=【点睛】本题考查作图-平移变换解题的关键是熟练掌握平移变换的性质.3、(1)图见解析,;(2)图见解析,【分析】(1)写出,关于原点对称的点,连接即可;(2)连接OC,OB,根据旋转的90可得,即可;【详解】(1),关于原点对称的点,作图如下;(2)连接OC,OB,根据旋转的90可得,其中点C2的坐标是(3,-1),作图如下:
19、【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键4、(1)见解析,点P的坐标为(3,1);(2)见解析,B的路径【分析】(1)根据位似变换的定义得出三个顶点的对应点,再首尾顺次连接即可;(2)将点A、B分别绕点C逆时针旋转90后得到其对应点,再首尾顺次连接,继而利用弧长公式求解即可【详解】解:(1)如图,A1B1C1和点P即为所求;点P的坐标为(3,1),(2)如图,A2B2C即为所求,由题BC,点B的路径【点睛】本题考查网格与作图作位似图、旋转、图形与坐标变换、勾股定理、弧长公式等知识,是重要考点,掌握相关知识是解题关键5、(1);(2);存在
20、一点或,使是以MN为直角边的等腰直角三角形【分析】(1)把代入一次函数解析式即可确定一次函数解析式为,得到,由勾股定理确定,求出,即求得,在RtAOC中,利用勾股定理即可得出结果;(2)设,利用待定系数法直线AC的解析式为,由,根据代入数值即可求出t的值;当N点在轴下方时,得到,设,过P点作直线轴,作,根据全等三角形的判定定理可得:,得到,再证明,得到,求得,则,根据,得到,列出方程求出a即可得到点N的坐标;当N点在x轴上方时,点与N关于对称,得到点N的坐标【详解】(1)把代入得:,一次函数解析式为,令,得,在中,在RtAOC中,;(2)设,P在线段AB上,设直线AC的解析式为,代入,得:,又轴,则,又,得如图所示,当N点在轴下方时,是以PM为直角边的等腰直角三角形,当时,设,过P点作直线轴,作,在与中,在与中,作,则,M在直线AB上,当N点在x轴上方时,如图所示:点与关于对称,则,即,综上:存在一点或,使是以MN为直角边的等腰直角三角形【点睛】题目主要是考查一次函数的综合题,待定系数法求函数解析式,直线所成三角形的面积,等腰直角三角形的性质,勾股定理,三角形全等的判定及性质,中心对称的点的性质,熟练掌握各知识点综合运用是解题的关键