《2022年最新北师大版八年级数学下册第三章图形的平移与旋转专题训练试卷.docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第三章图形的平移与旋转专题训练试卷.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A(2,3)B(2,3)C(3,2)D(2
2、,3)2、下列图形中,是中心对称图形的是( )ABCD3、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC()A10B2C2D44、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD5、如图,在ABC中,BAC108,将ABC绕点A按逆时针方向旋转得到,若点刚好落在BC边上,且,则C的度数为()A22B24C26D286、下列图形中,是中心对称图形也是轴对称图形的是()ABCD7、下列图形中,是中心对称图形的是()ABCD8、下列四个图形中,为中心对称图形的是()ABCD9、下列图形中,是中心对称图形的是( )AB
3、CD10、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_2、已知点与关于原点对称,则xy的值是_3、如图,一次函数y2x4的图像与坐标轴分别交于A、B两点,把线段AB绕点A逆时针旋转90,点B落在点B处,则点B的坐标是_4、已知点与点关于原点对称,则a-b的值为_5、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐
4、标是_三、解答题(5小题,每小题10分,共计50分)1、如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,连接DE求证:BDEBCE;2、如图,已知ABC是等边三角形,在ABC外有一点D,连接AD,BD,CD,将ACD绕点A按顺时针方向旋转得到ABE,AD与BE交于点F,BFD97(1)求ADC的大小;(2)若BDC7,BD2,BE4,求AD的长3、如图,在边长为1个单位长度的小正方形组成的网格中,ABC的顶点A、B、C在小正方形的顶点上,将ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1(1)在网格中画出三角形A1B1C1(2)A1B1与AB的位置关系 4、如图,在
5、平面直角坐标系中,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180得到A2B2C2,请画出A2B2C25、如图1,ABC,AED是等腰直角三角形,EAD=90,点B在线段AE上,点C在线段AD上(1)请直接写出线段BE与线段CD的数量关系为_;(2)如图2,将图1中的ABC绕点A顺时针旋转角(090),则(1)中的结论是否仍成立?若成立,请利用图2证明;若不成立,请说明理由-参考答案-一、单选题1、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反
6、数”即可求得【详解】解:点A(2,3)关于原点对称的点的坐标是故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键2、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋
7、转180度后与原图重合3、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键4、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对
8、称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键5、B【分析】根据图形的旋转性质,得ABAB,已知ABCB,结合等腰三角形的性质及三角形的外角性质,得B、C的关系即可解决问题【详解】解:ABCB,CCAB,ABBC+CAB2C,将ABC绕点A按逆时针方向旋转得到ABC,CC,ABAB,BABB2C,B+C+CAB1
9、80,3C180108,C24,故选:B【点睛】本题主要考查了等腰三角形的性质及图形的旋转性质,得B、C的关系为解决问题的关键6、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对
10、称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合7、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.8、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个
11、点叫做对称中心【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以不是中心对称图形;故选:B【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心9、B【分析】根据中心对称图形的定义求解即可【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意故选:B【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义中心对称图形:在平面内,把一个图形绕着某个点旋转18
12、0,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形10、D【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF则有:AF=FD,BE=EC,AB=EF=CD,四边形ABEF向右平移可以与四边形EFCD重合,平行四边形ABCD是平移重合图形同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,而找不到一条直线将圆分割成两部分
13、,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;故选D【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题二、填空题1、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数2、【分析】直接利用关于原点对称点的性质得出x,y的值进而得出答案【详解】解:点与关于原点对称, 解得:,则xy的值是:-3故答案为:-3【点睛】此题主要考查了关于原点对称
14、点的性质,正确得出的值是解题关键3、(4,6)【分析】过作轴,证明,求得线段、,即可求解【详解】解:过作轴,如下图:时,时,即,由题意可得:,又,即故答案为:【点睛】此题考查了一次函数的性质,全等三角形的判定与性质,旋转的性质,解题的关键是灵活运用相关性质进行求解4、5【分析】直接利用关于原点对称点的性质得出a,b的值,代入求解即可【详解】解:点A(a,1)与点B(4,b)关于原点对称,故答案为:5【点睛】本题考查了关于原点对称点的性质及求代数式的值,正确得出a,b的值是解题的关键5、【分析】点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标
15、.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为,而 , 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.三、解答题1、见解析【分析】根据旋转变换的性质得到,根据全等三角形的性质得到,由各角之间的关系可得,根据全等三角形的判定定理证明即可【详解】证明:由旋转的性质可知,在和中,【点睛】题目主要考查全等三角形的判定和性质,图形旋转的性质等,理解题意,理清各角之间的数量关系是解题关键2、(1)23;(2)【分析】(1)由旋转的性质可得ABAC,ADCE,CABDAE60,由三角形的内角和定理可求解;(2)连接DE
16、,可证AED是等边三角形,可得ADE60,ADDE,由旋转的性质可得ACDABE,可得CDBE4,由勾股定理可求解【详解】解:(1)将ACD绕点A按顺时针方向旋转得到ABE,ABAC,ADCE,CABDAE60,BFD97AFE,E180976023,ADCE23;(2)如图,连接DE,ADAE,DAE60,AED是等边三角形,ADE60,ADDE,将ACD绕点A按顺时针方向旋转得到ABE,ACDABE,CDBE4,BDC7,ADC23,ADE60,BDE90,DE,ADDE【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本
17、题的关键3、(1)见解析;(2)平行【分析】(1)将ABC向右平移3个单位长度,再向上平移2个单位长度,画出即可;(2)根据平移的性质:对应线段平行且相等,即可得出答案【详解】解:(1)如图所示,A1B1C1即为所求(2)根据平移的性质:对应线段平行且相等,故答案为:平行【点睛】此题考查了作图平移、平移的性质,熟练掌握平移的有关性质是解题的关键4、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案【详解】解:(1)如图所示:A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:
18、A2B2C2,即为所求【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键5、(1)BE=CD,理由见解析;(2)成立,理由见解析【分析】(1)根据等腰直角三角形的性质可得AB=AC,AE=AD,再根据等量关系可得线段BE与线段CD的关系;(2)根据等腰直角三角形的性质得到AB=AC,AE=AD,由旋转的性质可得BAE=CAD,根据全等三角形的性质即可得到结论【详解】解:(1)BE=CD,理由:ABC和AED都是等腰直角三角形,BAC=EAD=90,AB=AC,AE=AD,AE-AB=AD-AC,BE=CD,故答案为:BE=CD;(2)成立,理由:ABC和AED都是等腰直角三角形,BAC=EAD=90,AB=AC,AE=AD,由旋转的性质可得BAE=CAD,在BAE与CAD中,BAECAD(SAS),BE=CD【点睛】本题考查了等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,熟练掌握旋转的性质是解题的关键