2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题.docx

上传人:可****阿 文档编号:30718488 上传时间:2022-08-06 格式:DOCX 页数:15 大小:162.84KB
返回 下载 相关 举报
2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题.docx_第1页
第1页 / 共15页
2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题.docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x2ax9(x3)2,则a的值为( )A3B6C3D62、已知的值为5,那么代数式的值是( )A2030B202

2、0C2010D20003、下列多项式中能用平方差公式分解因式的是( )ABCD4、下列因式分解正确的是( )A16m24(4m2)(4m2)Bm41(m21)(m21)Cm26m9(m3)2D1a2(a1)(a1)5、下列等式中,从左往右的变形为因式分解的是()Aa2a1a(a1)B(ab)(a+b)a2b2Cm2m1m(m1)1Dm(ab)+n(ba)(mn)(ab)6、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)7、下列各式中,不能用平方差公式分解因式的是( )ABCD8、当n为自然数时,(n+1)2

3、(n3)2一定能()A被5整除B被6整除C被7整除D被8整除9、下列运算错误的是( )ABC D(a0)10、下列从左边到右边的变形,属于因式分解的是( )Ax2x6(x2)(x3)Bx22x1x(x2)1Cx2y2(xy)2D(x1)(x1)x21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:25x216y2_2、因式分解:_3、已知ab2,ab4,则a2bab2_4、因式分解:_5、如果,那么代数式的值是_三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)ax28ax16a; (2)x481x2y22、分解因式:4xy24x2yy33、利用

4、因式分解计算:(1)2201422013;(2)(2)101+(2)1004、分解因式:a3a2b4a+4b5、(1)计算:2; (2)因式分解:31212x-参考答案-一、单选题1、B【解析】【分析】由结合从而可得答案.【详解】解: 而 故选:B【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.2、B【解析】【分析】将化简为,再将代入即可得【详解】解:,把代入,原式=,故选B【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式3、A【解析】【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解

5、因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键4、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a

6、+1)(1-a),故该选项错误;故选:C【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止5、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分

7、解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解故选D【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键6、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义

8、及方法是解题关键7、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解【详解】解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意故选B【点睛】本题考查了平方差公式分解因式关键要掌握平方差公式8、D【解析】【分析】先把(n+1)2(n3)2分解因式可得结果为:从而可得答案.【详解】解: (

9、n+1)2(n3)2 n为自然数所以(n+1)2(n3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.9、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a0),故该选项正确,不符合题意,故选A【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键10、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一

10、判断即可.【详解】解:x2x6(x2)(x3)属于因式分解,故A符合题意;x22x1x(x2)1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2y2(xy)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x1)(x1)x21是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.二、填空题1、#【解析】【分析】利用平方差公式计算即可【详解】解:原式=,故答案为:【点睛】本题考查了利用平方差公式分解因式,掌握平方差公式的特征是解题的关键2、【解析】【分析】先提公因

11、式,再利用完全平方公式分解即可【详解】解:=故答案为:【点睛】本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式3、-8【解析】【分析】将提取公因式,在整体代入求值即可【详解】,故答案为:-8【点睛】本题考查代数式求值和因式分解,利用整体代入的思想是解答本题的关键4、【解析】【分析】先提取公因式,再用完全平方公式分解即可【详解】解:,=,=故答案为:【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解5、-64【解析】【分析】先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可【详解】解:=,原式=2(-4)8=-64,故答案是:-64【点睛

12、】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键三、解答题1、(1)a(x4)2 ;(2)x2(x9y)(x9y)【解析】【分析】(1)先提取公因式 再利用完全平方公式分解因式即可;(2)先提取公因式 再利用平方差公式分解即可.【详解】解:(1)原式a(x28x16) a(x4)2 (2)原式x2(x281y2) x2(x9y)(x9y)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键.2、-y(2x-y)2【解析】【分析】先提取公因式-y,再利用完全平方公式分解因式即可得答案【详解】4xy24x2yy3=-y(4

13、x2-4xy+y2)=-y(2x-y)2【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止3、(1)22013;(2)2100【解析】【分析】(1)根据22014222013进行解答即可;(2)根据(2)101(2)(2)100进行解答【详解】解:(1)220142201322201322013(2-1)22013=22013(2)(2)101+(2)100(2)(2)100+(2)100(-2+1)(2)100=2100【点睛】本题主要考查因式分解,熟练掌握提公因式是解题的关键4、(ab)(a

14、+2)(a2)【解析】【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解【详解】解:a3a2b4a+4b(a34a)(a2b4b)a(a24)b(a24)(ab)(a24)(ab)(a+2)(a2)【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键5、(1)0;(2)3x【解析】【分析】(1)根据题意,得=,合并同类项即可;(2)先提取公因式3x,后套用完全平方公式即可【详解】(1)2原式=2+-30(2)原式3x(4x4)3x【点睛】本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁