2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题(名师精选).docx

上传人:可****阿 文档编号:30628322 上传时间:2022-08-06 格式:DOCX 页数:16 大小:182.80KB
返回 下载 相关 举报
2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题(名师精选).docx_第1页
第1页 / 共16页
2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题(名师精选).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版七年级数学下册第八章因式分解同步训练练习题(名师精选).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A2560B4

2、90C70D492、下列各式从左至右是因式分解的是( )ABCD3、下列因式分解正确的是( )Ax24x4x(x4)4B96(mn)(nm)2(3mn)2C4x22x1(2x1)2Dx4y4(x2y2)(x2y2)4、将分解因式,正确的是( )ABCD5、下列因式分解正确的是( )ABCD6、下列从左边到右边的变形中,是因式分解的是( )ABCD7、下列运算错误的是( )ABC D(a0)8、下列各式中从左到右的变形中,是因式分解的是( )ABCD9、下列各式中,不能用平方差公式分解因式的是( )ABCD10、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+

3、y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、在处填入一个整式,使关于的多项式可以因式分解,则可以为_(写出一个即可)3、若x+y5,xy6,则x2yxy2的值为 _4、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为_5、分解因式:5x45x2_三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)(2)2、请将下列各式因式分解(1)3a(xy)5b

4、(yx); (2)x2(ab)2y2(ba)2(3)2xmyn14xm1yn(m,n均为大于1的整数)3、因式分解:(1) (2)4、分解因式:(1) (2)5、分解因式:(1)3a26a+3 (2)(x2+y2)24x2y2-参考答案-一、单选题1、B【解析】【分析】利用面积公式得到ab10,由周长公式得到a+b7,所以将原式因式分解得出ab(a+b)2将其代入求值即可【详解】解:长与宽分别为a、b的长方形,它的周长为14,面积为10,ab10,a+b7,a3b+2a2b2+ab3ab(a+b)21072490故选:B【点睛】本题主要考查了因式分解和代数式求值,准确计算是解题的关键2、A【解

5、析】【分析】根据因式分解的定义逐个判断即可【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解3、B【解析】【分析】利用公式法进行因式分解判断即可【详解】解:A、,故A错误,B、96(mn)(nm)2(3mn)2,故B正确,C、4x22x1,无法因式分解,故C错误,D

6、、,因式分解不彻底,故D错误,故选:B【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底4、C【解析】【分析】直接利用提取公因式法进行分解因式即可【详解】解:;故选C【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键5、B【解析】【分析】直接利用提取公因式法以及十字相乘法分解因式,进而判断即可【详解】解:A、,故此选项不合题意;B、,故此选项符合题意;C、,故此选项不合题意;D、,不能分解,故此选项不合题意;故选:B【点睛】本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首

7、先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止6、A【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分解,故本选项符合题意;B等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解7、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即

8、可判断【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a0),故该选项正确,不符合题意,故选A【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键8、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式(含有分式),不是因式分解;故选:C【点睛】本题考查了因式分解的意

9、义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子9、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解【详解】解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意故选B【点睛】本题考查了平方差公式分解因式关键要掌握平方差公式10、C【解析】【分析】根据因式分解的定义逐个判断即可

10、【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式二、填空题1、【解析】【分析】直接根据提公因式法因式分解即可【详解】解:,故答案为:【点睛】本题考查了提公因式法因式分解,准确找到公因式是解本题的关键2、2x【解析】【分析】可根据完全平方公式或提公因数法分解因式求解即可【详解】解

11、:,可以为2x、2x、2x1等,答案不唯一,故答案为:2x【点睛】本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键3、6或-6#-6或6【解析】【分析】先利用完全平方公式并根据已知条件求出x-y的值,再利用提公因式法和平方差公式分解因式,然后整体代入数据计算【详解】解:x+y=5,xy=6,(x-y)2=(x+y)2-4xy=1,x-y=1,x2y-xy2=xy(x-y)=6(x-y),当x-y=1时,原式=61=6;当x-y=-1时,原式=6(-1)=-6故答案为:6或-6【点睛】本题主要考查了提公因式法分解因式,根据完全平方式的两个公式之间的关系求出(x-y)的值是解本题的关

12、键,也是难点4、【解析】【分析】根据题意可知a、b是相互独立的,在因式分解中b决定常数项,a决定一次项的系数,利用多项式相乘法则计算,再根据对应系数相等即可求出a、b的值,代入原多项式进行因式分解【详解】解:分解因式x2+ax+b时,甲看错了b,分解结果为,在x2+6x+8中,a6是正确的,分解因式x2+ax+b时,乙看错了a,分解结果为,在x2+10x+9中,b9是正确的,x2+ax+bx2+6x+9故答案为:【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键5、5x2(x1)(x1)【解析】【分析】直接提取公因式5x2,进而利用平方差公式分解因式【详解】解:

13、5x4-5x2=5x2(x2-1)=5x2(x+1)(x-1)故答案为:5x2(x+1)(x-1)【点睛】本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键三、解答题1、(1);(2)【解析】【分析】(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.【详解】解:(1)原式(2)原式【点睛】本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.2、(1)(xy)(3a+5b);(2)(ab)2(x -y)(x +y);(3)【解析】【分析】(1)首先将3a(xy)5b(yx)

14、变形为3a(xy)+5b(xy),然后利用提公因式法分解因式即可;(2)首先将x2(ab)2y2(ba)2变形为x2(ab)2y2(ab)2,然后利用提公因式法分解因式即可;(3)利用提公因式法分解因式即可求解;【详解】解:(1)3a(xy)5b(yx)3a(xy)+5b(xy)(xy)(3a+5b)(2)x2(ab)2y2(ba)2x2(ab)2y2(ab)2(ab)2(x2y2)(ab)2(x -y)(x +y)(3)2xmyn14xm1yn【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等3、(1)

15、;(2)【解析】【分析】(1)先提取公因式 再利用平方差公式分解因式即可;(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.【详解】解:(1) (2)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.4、(1);(2)【解析】【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可【详解】解:(1);(2)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键5、(1);(2)【解析】【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可【详解】(1),;(2),【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁