《排列与组合课件ppt.ppt》由会员分享,可在线阅读,更多相关《排列与组合课件ppt.ppt(53页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.2 1.2 排列组合排列组合1.2.1 1.2.1 排列排列 从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名参加某天名参加某天的一项活动,其中的一项活动,其中1 1名同学参加上午的活动,另名同学参加上午的活动,另1 1名同学参加下午的活动,有多少种不同的方法?名同学参加下午的活动,有多少种不同的方法?种种 种种种种甲甲乙乙丙丙乙乙甲甲丙丙丙丙甲甲乙乙分析分析:树形图:树形图:相应的排列:相应的排列:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙甲乙,甲丙,乙甲,乙丙,丙甲,丙乙 从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名参加某天名参加某天的一项活动,其中的一项活动,
2、其中1 1名同学参加上午的活动,名同学参加上午的活动,1 1名名同学参加下午的活动,有多少种不同的方法?同学参加下午的活动,有多少种不同的方法?把问题把问题1 1中被取的中被取的对象对象叫做叫做元素元素问题改述为:问题改述为: 从从3 3个不同的元素个不同的元素a,b,ca,b,c中任取中任取2 2个,按照一定的个,按照一定的顺序排成一列,共有多少种不同的排列方法。顺序排成一列,共有多少种不同的排列方法。不同的排列为:不同的排列为:ab ac ba bc ca cb 共有共有 3X2=6 种种种种 种种 种种种种 从、这四个数字中,取出从、这四个数字中,取出3 3个数个数字排成一个三位数,共可
3、得多少个不同的三位数?字排成一个三位数,共可得多少个不同的三位数? 分析:分析: 树形图:树形图: 从、这四个数字中,取出从、这四个数字中,取出3 3个数个数字排成一个三位数,共可得多少个不同的三位数?字排成一个三位数,共可得多少个不同的三位数? 把问题把问题1 1中被取的中被取的对象对象叫做叫做元素元素问题改述为:问题改述为: 从从4 4个不同的元素个不同的元素a,b,c,da,b,c,d中任取中任取3 3个,按照一定个,按照一定的顺序排成一列,共有多少种不同的排列方法。的顺序排成一列,共有多少种不同的排列方法。不同的排列为:不同的排列为:abc abd acb acd adb adcbac
4、 bad bca bcd bda bdccab cad cba cbd cda cdbdab dac dba dbc dca dcb共有共有 4X3X2=24 种种基本概念基本概念2、排列定义:、排列定义: 从从n个不同元素中取出个不同元素中取出m (m n)个元素,个元素,按照一定的顺序排成一列,叫做从按照一定的顺序排成一列,叫做从n个不同元个不同元素中取出素中取出m个元素的一个排列。个元素的一个排列。说明:说明:1 1、元素不能重复。、元素不能重复。2 2、“按一定顺序按一定顺序”就是与位置有关,这是判断一就是与位置有关,这是判断一个问题是否是排列问题的关键。个问题是否是排列问题的关键。3
5、 3、两个排列相同,当且仅当这两个排列中的两个排列相同,当且仅当这两个排列中的元素元素完全相同完全相同,而且元素的,而且元素的排列顺序也完全相同排列顺序也完全相同。4 4、m mn n时的排列叫时的排列叫选排列选排列,m mn n时的排列叫时的排列叫全排列全排列。5 5、为了使写出的所有排列情况既不重复也不遗漏,、为了使写出的所有排列情况既不重复也不遗漏,可以采用可以采用“树形图树形图”。(有序性)(有序性)(互异性)(互异性)3 排列数的定义排列数的定义从从 n n 个个不同不同元素中,任取元素中,任取 m (mn) m (mn) 个元素的个元素的所有不同的所有不同的排列的个数排列的个数,叫
6、做从,叫做从 n n 个不同元素个不同元素中取出中取出 m m 个元素的一个个元素的一个排列数排列数. . 记作记作注意:注意:(2)排列与排列数的区别)排列与排列数的区别排排 列:列:不是数不是数 , 是有序的元素列是有序的元素列排列数:排列数:是数是数 ,排列的个数,排列的个数mn(1) 且且 mnmn,m nN从从n个不同元素中取出个元素,排个不同元素中取出个元素,排成一列,共有多少种排列方法?成一列,共有多少种排列方法?从从n个不同元素中取出个元素,排个不同元素中取出个元素,排成一列,共有多少种排列方法成一列,共有多少种排列方法?n种种(n-1)种种n种种 (n-1)种种 (n-2)种
7、种=n (n-1)2n=n (n-1) (n-2)3n从从n个不同元素中取出个不同元素中取出m个元素,排个元素,排成一列,共有多少种排列方法?成一列,共有多少种排列方法?n种种 (n-1)种种 (n-2)种种(n-m+1)种种 排列数公式:排列数公式:=n (n-1) (n-2) (n-m+1)种种mn排列数公式的特征:排列数公式的特征:()()m项相乘;项相乘;()右边第一个因数是()右边第一个因数是n ,后面每个因数比前一个少,后面每个因数比前一个少1nn表示什么?表示什么?n个元素全部取出的排列的个数,个元素全部取出的排列的个数,其中每个排列叫做其中每个排列叫做n 个元素的一个个元素的一
8、个全排列全排列nn(1) (2)3 2 1nnn !n(n的的阶乘阶乘)规定:规定:0! 1!()!mnnAnm (1) (2)(1)mnn nnnmA排列数公式:排列数公式:mnn! (m n,m,n N)(n m)!A)Nnm,n,(m 常用于计算含有数字的常用于计算含有数字的排列数的值排列数的值常用于对含有字母的排列数常用于对含有字母的排列数的式子进行变形和论证的式子进行变形和论证10 !规定:规定:123)2()1( nnnAnn!nAnn 1!2!3!4!5!6!7!(n+1) n!=(1)(1)(2 )32 1nnnn=(n+1)!(n+2)(n+1) n!(2 )(1)(1)(2
9、 )32 1nnnnn=(n+2)!例例4 4 计算:计算:316(1)A 3360141516 =6!=654321=72066(2)A例题与练习例题与练习! 57!7! 8)3( 22! (1)!(4)mmmmA42221mm例例2.2.解方程解方程: :4321(1)140nnAA189(2)34mmAA(1)n=3 (2)m=6 例例2 2 某年全国足球甲级(某年全国足球甲级(A A组)联赛组)联赛共有共有1414个队参加,每队要与其余各队在个队参加,每队要与其余各队在主、客场分别比赛一次,求总共要进行主、客场分别比赛一次,求总共要进行多少场比赛多少场比赛. .21414 13182A
10、 ( (场场) )例例3 3(1 1)从)从5 5本不同的书中选本不同的书中选3 3本送给本送给3 3名名同学,每人各同学,每人各1 1本,共有多少种不同的送本,共有多少种不同的送法?法? 3560A=( (种种) )35125=( (种种) )(2 2)从)从5 5种不同的书中买种不同的书中买3 3本送给本送给3 3名同学,名同学,每人各每人各1 1本,共有多少种不同的送法?本,共有多少种不同的送法? 例例4:用:用0到到9这这10个数字,可以组成多少个没有重复个数字,可以组成多少个没有重复数字的三位数?数字的三位数?百位十位个位解法一:对排列方法分步思考。解法一:对排列方法分步思考。648
11、899181919AAA6488992919AA从位置出发从位置出发解法二:对排列方法分类思考。符合条件的三位数解法二:对排列方法分类思考。符合条件的三位数可分为两类:可分为两类:百位百位 十位十位 个位个位A390百位百位 十位十位 个位个位A290百位百位 十位十位 个位个位A2964822939AA根据加法原理根据加法原理从元素从元素0出发分析出发分析解法三:间接法解法三:间接法. 从从0到到9这十个数字中任取三个数字的排列这十个数字中任取三个数字的排列 A310.648898910A310A29 所求的三位数的个数是所求的三位数的个数是其中以其中以0为排头的排列数为为排头的排列数为 .
12、 A29逆向思维法逆向思维法个。有种,故符合题意的偶数有、千位上的排列数不能选),十位、百位种(排列数有中选);万位上的数字、种(从有)个位上的数字排列数解法一:(正向思考法331312331312542AAAAAA百位十位个位千位万位13A33A12A例例5:由数字:由数字1、2、3、4、5组成没有重复数字的五位组成没有重复数字的五位数,其中小于数,其中小于50000的偶数共有多少个?的偶数共有多少个?有约束条件的排列问题有约束条件的排列问题百位十位个位千位万位例例5:由数字:由数字1、2、3、4、5组成没有重复数字的五位组成没有重复数字的五位数,其中小于数,其中小于50000的偶数共有多少
13、个?的偶数共有多少个?个共有:个,符合题意的偶数的数减去偶数中大于个,再数个,减去其中奇数的个位数有数字的组成无重复、)由解法二:(逆向思维法365000055432133124413553312441355AAAAAAAAAA有约束条件的排列问题有约束条件的排列问题有约束条件的排列问题有约束条件的排列问题例例6:6个人站成前后两排照相,要求前排个人站成前后两排照相,要求前排2人,后排人,后排4人,那么不同的排法共有人,那么不同的排法共有( )A.30种种 B. 360种种 C. 720种种 D. 1440种种 C例例7:有:有4个男生和个男生和3个女生排成一排,按下列要求各有多少种不同排法:
14、个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;)男甲排在正中间; (2)男甲不在排头,女乙不在排尾;)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;)三个女生排在一起;(4)三个女生两两都不相邻;)三个女生两两都不相邻;(5)全体站成一排,甲、乙、丙三人自左向右顺序不变;)全体站成一排,甲、乙、丙三人自左向右顺序不变;(6 6)若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?对于相邻问题,常用对于相邻问题,常用“捆绑法捆绑法”对于不相邻问题,常用对于不相邻问题,常用 “插空法插空法”例例8:一天
15、要排语、数、英、体、班会六节课,要求:一天要排语、数、英、体、班会六节课,要求上午的四节课中,第一节不排体育课,数学排在上上午的四节课中,第一节不排体育课,数学排在上午;下午两节中有一节排班会课,问共有多少种不午;下午两节中有一节排班会课,问共有多少种不同的排法?同的排法?有约束条件的排列问题有约束条件的排列问题1.2.2 1.2.2 组合组合 问题一:问题一:从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名去参名去参加某天的一项活动,其中加某天的一项活动,其中1 1名同学参加上午的名同学参加上午的活动,活动,1 1名同学参加下午的活动,有多少种不名同学参加下午的活动,有多少种不
16、同的选法?同的选法?问题二:问题二:从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名去参名去参加某天一项活动,有多少种不同的选法?加某天一项活动,有多少种不同的选法?236A 甲、乙;甲、丙;乙、丙甲、乙;甲、丙;乙、丙 3 3情境创设情境创设从已知的从已知的3个不同个不同元素中每元素中每次取出次取出2个元素个元素 , ,并成一组并成一组问题问题2从已知的从已知的3 个不同个不同元素中每元素中每次取出次取出2个元素个元素 , ,按照一定按照一定的顺序排的顺序排成一列成一列. .问题问题1排列排列组合组合有有顺顺序序无无顺顺序序 一般地,从一般地,从n个不同元素中取出个不同元素中取
17、出m(mn)个元素)个元素并成一组并成一组,叫做从,叫做从n个个不同元素中取出不同元素中取出m个元素的一个个元素的一个组合组合 排列与组合的排列与组合的概念有什么共概念有什么共同点与不同点?同点与不同点? 概念讲解概念讲解组合定义组合定义: :组合定义组合定义: : 一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个个元素元素并成一组并成一组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的一个元素的一个个组合组合排列定义排列定义: : 一般地,从一般地,从n n个不同元素中取出个不同元素中取出m (mn) 个个元素,元素,按照一定的顺序排成一列按照一定的顺序排成一列
18、,叫做从,叫做从 n 个不同元素个不同元素中取出中取出 m 个元素的一个个元素的一个排列排列. .共同点共同点: : 都要都要“从从n个不同元素中任取个不同元素中任取m个元素个元素” ” 不同点不同点: : 排列排列与元素的顺序有关,与元素的顺序有关, 而组合而组合则与元素的顺序无关则与元素的顺序无关. .概念讲解概念讲解思考一思考一: :ab b与与b ba是相同的排列还是相同的组合是相同的排列还是相同的组合? ?为什么为什么? ?思考二思考二: :两个相同的排列有什么特点两个相同的排列有什么特点? ?两个相同的组合呢两个相同的组合呢? ?)元素相同;)元素相同;)元素排列顺序相同)元素排列
19、顺序相同.元素相同元素相同概念理解概念理解 构造排列分成两步完成,先取后排;而构造构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤组合就是其中一个步骤.思考三思考三: :组合与排列有联系吗组合与排列有联系吗? ?1.1.从从 a , b , c三个不同的元素中取出两个元素的所有组三个不同的元素中取出两个元素的所有组合分别是合分别是: :ab , ac , bc 2.2.已知已知4 4个元素个元素a , b , c , d , ,写出每次取出两个元素的写出每次取出两个元素的所有组合所有组合. .ab c d b c d cd ab , ac , ad , bc , bd , cd(3(
20、3个个) )(6(6个个) )概念理解概念理解 从从n个不同元素中取出个不同元素中取出m(mn)个元素的个元素的所有组合的个数,叫做从所有组合的个数,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数组合数,用符号,用符号 表示表示. .mnC233C 246C 如如: :从从 a , b , c三个不同的元素中取出两个元素的所三个不同的元素中取出两个元素的所有组合个数是有组合个数是: :如如: :已知已知4 4个元素个元素a 、b 、 c 、 d ,写出每次取出两个写出每次取出两个元素的所有组合个数是:元素的所有组合个数是:概念讲解概念讲解组合数组合数: : 是一个数,应该把它
21、与是一个数,应该把它与“组合组合”区别开来区别开来 mnC1.写出从写出从a,b,c,d 四个元素中任取三个元素的所有组合。四个元素中任取三个元素的所有组合。abc , abd , acd , bcd .bcddcbacd组合排列abcabdacdbcdabc bac cabacb bca cbaabd bad dabadb bda dbaacd cad dacadc cda dcabcd cbd dbcbdc cdb dcb不写出所有组合,怎样才能知道组合的种数?不写出所有组合,怎样才能知道组合的种数?你发现了你发现了什么什么?可分两步考虑:求P34PPC333434 34A求可分两步考虑:
22、34 4C第一步,()个;33 6A第二步,()个;333.434 CAA根据分步计数原理,334343ACA从而mnC如何计算如何计算: :组合数公式组合数公式 排列与组合是有区别的,但它们又有联系排列与组合是有区别的,但它们又有联系根据分步计数原理,得到:根据分步计数原理,得到:因此:因此: 一般地,求从一般地,求从 个不同元素中取出个不同元素中取出 个元素的排个元素的排列数,可以分为以下列数,可以分为以下2步:步: nm 第第1步,先求出从这步,先求出从这 个不同元素中取出个不同元素中取出 个元素个元素的组合数的组合数 mnCnm第第2步,求每一个组合中步,求每一个组合中 个元素的全排列
23、数个元素的全排列数 mnAmmmmnmnACA!121mmnnnnAACmmmnmn 这里 ,且 ,这个公式叫做 *Nnm、nm 概念讲解概念讲解组合数公式组合数公式:(1)(2)(1)!mmnnmmAn nnnmCAm 从从 n 个不同元中取出个不同元中取出m个元素的排列数个元素的排列数 mmmnmnCAA!()!mnnCm nm01.nC我们规定:概念讲解概念讲解例例1 1计算:计算: 47C 710C32(3) , nnnCA已知求例例2.2.甲、乙、丙、丁甲、乙、丙、丁4 4支足球队举行单循环赛,支足球队举行单循环赛,(1)(1)列出所有各场比赛的双方;列出所有各场比赛的双方;(2)2
24、)列出所有冠亚军的可能情况列出所有冠亚军的可能情况. .(2 2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲乙甲、丙甲丙甲、丁甲丁甲、丙乙丙乙、丁乙丁乙、丁丙丁丙(1) (1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:解:例题分析例题分析(4)(4)求求38-n3n3n21+nC+C的值.例3.11CmnmCmnmn:求证,! :)(!证明mnmnCmn)!1()!1(! 111mnmnmnmmnmCmn)!1)(! )!1(1mnmnnmm.! )( !Cmnmnmn 例例1:一位教练的足球队共有:一位教练的足球队共有17名初
25、级学员,他们中以名初级学员,他们中以前没有一人参加过比赛。按照足球比赛规则,比赛时前没有一人参加过比赛。按照足球比赛规则,比赛时一个足球队的上场队员是一个足球队的上场队员是11人。问:人。问: (1)这位教练从这)这位教练从这17名学员中可以形成多少种学员上名学员中可以形成多少种学员上场方案?场方案?(2)如果在选出)如果在选出11名上场队员时,还要确定其中的守名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?门员,那么教练员有多少种方式做这件事情?例例3.(1)3.(1)凸五边形有多少条对角线?凸五边形有多少条对角线?(2)(2)凸凸n n( n3n3)边形有多少条对角线
26、?)边形有多少条对角线?例例2.(1)2.(1)平面内有平面内有1010个点,以其中每个点,以其中每2 2个点为端点的线个点为端点的线段共有多少条?段共有多少条? (2) (2)平面内有平面内有1010个点,以其中每个点,以其中每2 2个点为端点的有向个点为端点的有向线段共有多少条?线段共有多少条?例例4:在:在100件产品中有件产品中有98件合格品,件合格品,2件次品。产品件次品。产品检验时检验时,从从100件产品中任意抽出件产品中任意抽出3件。件。(1)一共有多少种不同的抽法一共有多少种不同的抽法?(2)抽出的抽出的3件中恰好有件中恰好有1件是次品的抽法有多少种件是次品的抽法有多少种?(3
27、)抽出的抽出的3件中至少有件中至少有1件是次品的抽法有多少种件是次品的抽法有多少种?(4)抽出的抽出的3件中至多有一件是次品的抽法有多少种?件中至多有一件是次品的抽法有多少种?说明:说明:“至少至少”“”“至多至多”的问题,通常用分类的问题,通常用分类法或间接法求解。法或间接法求解。例例5 5、某医院有内科医生、某医院有内科医生1212名,外科医生名,外科医生8 8名,现要名,现要派派5 5人参加支边医疗队,至少要有人参加支边医疗队,至少要有1 1名内科医生和名内科医生和1 1名名外科医生参加,有多少种选法?外科医生参加,有多少种选法?例例6:(1)平面内有)平面内有9个点,其中个点,其中4个
28、点在一条直线个点在一条直线上,此外没有上,此外没有3个点在一条直线上,过这个点在一条直线上,过这9个点可确个点可确定多少条直线?可以作多少个三角形?定多少条直线?可以作多少个三角形?(2)空间)空间12个点,其中个点,其中5个点共面,此外无任何个点共面,此外无任何4个个点共面,这点共面,这12个点可确定多少个不同的平面?个点可确定多少个不同的平面?例例7 7、有翻译人员、有翻译人员1111名,其中名,其中5 5名仅通英语、名仅通英语、4 4名仅通名仅通法语,还有法语,还有2 2名英、法语皆通。现欲从中选出名英、法语皆通。现欲从中选出8 8名,其名,其中中4 4名译英语,另外名译英语,另外4 4
29、名译法语,一共可列多少张不同名译法语,一共可列多少张不同的名单?的名单?例例8、8双互不相同的鞋子混装在一只口袋中,从中任双互不相同的鞋子混装在一只口袋中,从中任意取出意取出4只,试求满足如下条件各有多少种情况:只,试求满足如下条件各有多少种情况:(1)4只鞋子恰有两双;只鞋子恰有两双;(2) 4只鞋子没有成双的;只鞋子没有成双的;(3) 4只鞋子只有一双。只鞋子只有一双。一个口袋内装有大小相同的一个口袋内装有大小相同的7个白球和个白球和1个黑球个黑球 从口袋内取出从口袋内取出3个球,共有多少种取法?个球,共有多少种取法? 从口袋内取出从口袋内取出3个球,使其中含有个球,使其中含有1 1个黑球
30、,有个黑球,有多少种取法?多少种取法? 从口袋内取出从口袋内取出3个球,使其中不含黑球,有多少个球,使其中不含黑球,有多少种取法?种取法?5638C 2127C 3537C解:解:(1) 性质性质2 我们可以这样解释:我们可以这样解释:从口袋内的从口袋内的8个球中所取出的个球中所取出的3个球,可以分为个球,可以分为两类:一类两类:一类含有含有1个个黑球,一类不含黑球,一类不含有黑球因此根据分类计数原理,有黑球因此根据分类计数原理,上述等式成立上述等式成立 我们发现:我们发现:38C27C37C为什么呢为什么呢CCmnmn1 :证明)!1()!1(!)!( !mnmnmnmn)!1( !) 1(
31、 !mnmmnmnn)!1( !)1(mnmnmmn!) 1(!)!1(mnmn.1Cmncccmnmnmn11性质性质2 注注:1 公式特征:下标相同而上标差公式特征:下标相同而上标差1的两个组合数的两个组合数之和,等于下标比原下标多之和,等于下标比原下标多1而上标与原组合数上标而上标与原组合数上标较大的相同的一个组合数较大的相同的一个组合数 2 此性质的作用:恒等变形,简化运算在今后学此性质的作用:恒等变形,简化运算在今后学习习“二项式定理二项式定理”时,我们会看到它的主要应用时,我们会看到它的主要应用cccmnmnmn11例计算:例计算:329999( 1 ) ;CC332898( 2)
32、 .2CCC16170012398991003100 C563828283838)(2CCCCC;11111)1( CCCCmnmnmnmn.21211)2( CCCCmnmnmnmn例例2 求证求证:.111111)1(CCCCCCmnmnmnmnmnmn .)()(2121111111)2( CCCCCCCCCCmnmnmnmnmnmnmnmnmnmn例例3、6本不同的书,按下列条件,各有多少种不同的分法;本不同的书,按下列条件,各有多少种不同的分法;(1)分给甲、乙、丙三人,每人两本;)分给甲、乙、丙三人,每人两本;(2)分成三份,每份两本;)分成三份,每份两本;(3)分成三份,一份)分
33、成三份,一份1本,一份本,一份2本,一份本,一份3本;本;(4)分给甲、乙、丙)分给甲、乙、丙3人,一人人,一人1本,一人本,一人2本,一人本,一人3本;本;(5)分给甲、乙、丙)分给甲、乙、丙3人,每人至少一本;人,每人至少一本;(6)分给)分给5个人,每人至少一本;个人,每人至少一本;(7)6本相同的书,分给甲乙丙三人,每人至少一本。本相同的书,分给甲乙丙三人,每人至少一本。例例4、某城新建的一条道路上有、某城新建的一条道路上有12只路灯,为了节只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两灯,但
34、两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有(盏灯,可以熄灭的方法共有( )(A) 种(种(B) 种种 (C) 种种 (D) 种种38C38A39C311C三、混合问题,先三、混合问题,先“组组”后后“排排”例例5 对某种产品的对某种产品的6件不同的正品和件不同的正品和4件不同的次品件不同的次品,一一进行测试,至区分出所有次品为止,若所有次一一进行测试,至区分出所有次品为止,若所有次品恰好在第品恰好在第5次测试时全部发现次测试时全部发现,则这样的测试方法则这样的测试方法有种可能?有种可能?解:由题意知前解:由题意知前5次测试恰有次测试恰有4次测到次品,且第次测到次品,且第5次测试是次品。故有:次测试是次品。故有: 种可能。种可能。576441634ACC四、分类组合四、分类组合,隔板处理隔板处理例例6、 从从6个学校中选出个学校中选出30名学生参加数学竞赛名学生参加数学竞赛,每每校至少有校至少有1人人,这样有几种选法这样有几种选法?分析分析:问题相当于把个问题相当于把个30相同球放入相同球放入6个不同盒子个不同盒子(盒盒子不能空的子不能空的)有几种放法有几种放法?这类问可用这类问可用“隔板法隔板法”处理处理.解解:采用采用“隔板法隔板法” 得得:5294095C