对坐标的曲线积分(第二类曲线积分)ppt课件.ppt

上传人:飞****2 文档编号:28234665 上传时间:2022-07-26 格式:PPT 页数:33 大小:998KB
返回 下载 相关 举报
对坐标的曲线积分(第二类曲线积分)ppt课件.ppt_第1页
第1页 / 共33页
对坐标的曲线积分(第二类曲线积分)ppt课件.ppt_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《对坐标的曲线积分(第二类曲线积分)ppt课件.ppt》由会员分享,可在线阅读,更多相关《对坐标的曲线积分(第二类曲线积分)ppt课件.ppt(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、一、一、问题问题的提出的提出二、对坐标的曲线积分的概念二、对坐标的曲线积分的概念三、对坐标的曲线积分的计算三、对坐标的曲线积分的计算四、小结四、小结第三节第三节 对坐标的曲线积分对坐标的曲线积分(第二类第二类 曲线积分曲线积分)oxyABL一、问题的提出1 nMiM1 iM2M1Mix iy 实例实例: : 变力沿曲线所作的功变力沿曲线所作的功,:BALjyxQiyxPyxF),(),(),( 常力所作的功常力所作的功分割分割.),(,),(,1111110BMyxMyxMMAnnnn .)()(1jyixMMiiii .ABFW 求和求和. ),(),(1 niiiiiiiyQxP 取极限取

2、极限. ),(),(lim10 niiiiiiiyQxPW 近似值近似值精确值精确值,),(),(),(jQiPFiiiiii 取取,),(1iiiiiMMFW .),(),(iiiiiiiyQxPW 即即 niiWW1oxyABL1 nMiM1 iM2M1M),(iiF ix iy 二、对坐标的曲线积分的概念,0.),(,).,;, 2 , 1(),(,),(),(.),(),(,11101111222111时时长度的最大值长度的最大值如果当各小弧段如果当各小弧段上任意取定的点上任意取定的点为为点点设设个有向小弧段个有向小弧段分成分成把把上的点上的点用用上有界上有界在在函数函数向光滑曲线弧向

3、光滑曲线弧的一条有的一条有到点到点面内从点面内从点为为设设 iiiiiiiiiiniinnnMMyyyxxxBMAMniMMnLyxMyxMyxMLLyxQyxPBAxoyL1.定义定义.),(lim),(,(),(,),(101iiniiLniiiixPdxyxPxLyxPxP 记作记作或称第二类曲线积分)或称第二类曲线积分)积分积分的曲线的曲线上对坐标上对坐标在有向曲线弧在有向曲线弧数数则称此极限为函则称此极限为函的极限存在的极限存在类似地定义类似地定义.),(lim),(10iiniiLyQdyyxQ ,),(),(叫做被积函数叫做被积函数其中其中yxQyxP.叫积分弧段叫积分弧段L2.

4、存在条件:存在条件:.,),(),(第二类曲线积分存在第二类曲线积分存在上连续时上连续时在光滑曲线弧在光滑曲线弧当当LyxQyxP3.组合形式组合形式 LLLdyyxQdxyxPdyyxQdxyxP),(),(),(),(.,jdyidxdsjQiPF 其其中中. LdsF4.4.推广推广 空间有向曲线弧空间有向曲线弧.),(lim),(10iiiniixPdxzyxP . RdzQdyPdx.),(lim),(10iiiniiyQdyzyxQ .),(lim),(10iiiniizRdzzyxR 5.5.性质性质.,)1(2121 LLLQdyPdxQdyPdxQdyPdxLLL则则和和分成

5、分成如果把如果把则则有向曲线弧有向曲线弧方向相反的方向相反的是与是与是有向曲线弧是有向曲线弧设设,)2(LLL 即对坐标的曲线积分与曲线的方向有关即对坐标的曲线积分与曲线的方向有关. LLdyyxQdxyxPdyyxQdxyxP),(),(),(),(三、对坐标的曲线积分的计算,),(),(, 0)()(,)(),(,),(,),(),(,),(),(22存在存在则曲线积分则曲线积分且且续导数续导数一阶连一阶连为端点的闭区间上具有为端点的闭区间上具有及及在以在以运动到终点运动到终点沿沿的起点的起点从从点点时时到到变变单调地由单调地由当参数当参数的参数方程为的参数方程为续续上有定义且连上有定义且

6、连在曲线弧在曲线弧设设 LdyyxQdxyxPttttBLALyxMttytxLLyxQyxP 定理定理dttttQtttPdyyxQdxyxPL)()(),()()(),(),(),( 且且特殊情形特殊情形.)(:)1(baxxyyL,终点为,终点为起点为起点为 .)()(,)(,dxxyxyxQxyxPQdyPdxbaL 则则.)(:)2(dcyyxxL,终点为,终点为起点为起点为 .),()(),(dyyyxQyxyyxPQdyPdxdcL 则则.,)()()(:)3( 终点终点起点起点推广推广ttztytx dtttttRttttQttttPRdzQdyPdx)()(),(),()()

7、(),(),()()(),(),( 例例1.)1 , 1()1, 1(,2的一段弧的一段弧到到上从上从为抛物线为抛物线其中其中计算计算BAxyLxydxL 解解的定积分,的定积分,化为对化为对x)1(.xy OBAOLxydxxydxxydx 1001)(dxxxdxxx 10232dxx.54 xy 2)1, 1( A)1 , 1(B的定积分,的定积分,化为对化为对y)2(,2yx ABLxydxxydx 1122)(dyyyy. 11到到从从 y 1142dyy.54 xy 2)1, 1( A)1 , 1(B.)0 ,()0 ,()2(;)1(,2的直线段的直线段轴到点轴到点沿沿从点从点的

8、上半圆周的上半圆周针方向绕行针方向绕行、圆心为原点、按逆时、圆心为原点、按逆时半径为半径为为为其中其中计算计算aBxaAaLdxyL 例例2解解,sincos:)1( ayaxL,变到变到从从 0)0 ,(aA)0 ,( aB 0原式原式 daa)sin(sin22 )0 ,(aA)0 ,( aB .343a , 0:)2( yL,变到变到从从aax aadx0原式原式. 0 注注:被积函数相同,起点和终点也相同,但路:被积函数相同,起点和终点也相同,但路径不同积分结果不同径不同积分结果不同. 03a)(cos)cos1(2 d 例例3).1 , 1(),0 , 1()0 , 0(,)3(;)

9、1 , 1()0 , 0()2(;)1 , 1()0 , 0()1(,2222依次是点依次是点,这里,这里有向折线有向折线的一段弧的一段弧到到上从上从抛物线抛物线的一段弧的一段弧到到上从上从抛物线抛物线为为其中其中计算计算BAOOABBOyxBOxyLdyxxydxL 2xy )0 , 1(A)1 , 1(B解解.)1(的积分的积分化为对化为对 x, 10,:2变到变到从从xxyL 1022)22(dxxxxx原式原式 1034dxx. 1 ) 0 , 1 (A)1 ,1(B2yx .)2(的积分的积分化为对化为对 y,10,:2变到变到从从yyxL 1042)22(dyyyyy原式原式 10

10、45dxy. 1 )0 , 1(A)1 , 1(B)3( ABOAdyxxydxdyxxydx2222原式原式,上上在在 OA,10, 0变到变到从从xy 1022)002(2dxxxdyxxydxOA. 0 ,上上在在 AB,10, 1变变到到从从yx 102)102(2dyydyxxydxAB. 1 10 原原式式. 1 ) 0 , 1 (A)1 ,1(B注:被积函数相同,起点和终点也相同,但路注:被积函数相同,起点和终点也相同,但路径不同而积分结果相同径不同而积分结果相同.zxyyzxzydd2d)(222tx 2ty 3tz 例例4、计算、计算为:为:,t从从0变到变到1的一段弧。的一

11、段弧。,zxyzxyddd2222222azyx0zaxyx22例例5、计算、计算为:为:与与的交线。的交线。四、四、 两类曲线积分之间的联系:两类曲线积分之间的联系:,)()( tytxL :设有向平面曲线弧为设有向平面曲线弧为,),( 为为处的切线向量的方向角处的切线向量的方向角上点上点yxL LLdsQPQdyPdx)coscos(则则(可以推广到空间曲线上(可以推广到空间曲线上 ) ,),( 为为处的切线向量的方向角处的切线向量的方向角上点上点zyx dsRQPRdzQdyPdx)coscoscos(则则 dstA rdA可用向量表示可用向量表示,其中其中,RQPA ,cos,cos,

12、cos t,dzdydxdstrd 有向曲线元;有向曲线元;处的单位切向量处的单位切向量上点上点),(zyx LyyxQxyxPd),(d),(L2xy )0 , 0() 1 , 1 (例例、把、把化为对弧长的曲线积分,其中化为对弧长的曲线积分,其中为沿抛物线为沿抛物线从从到到的一段弧。的一段弧。Lyyxxxyd)(d2L2xy )0 , 0() 1 , 1 () 1 , 0(例、计算例、计算,其中,其中1)沿曲线沿曲线从从到到2)沿从沿从经经到到为为的一段弧。的一段弧。)0 , 0() 1 , 1 (的折线段。的折线段。Lyyxxyxd)()d(2222L)0 , 2(A|1 |1xy)0

13、, 0(例、计算例、计算,其中,其中为:从为:从沿曲线沿曲线到到。四、小结1、对坐标曲线积分的概念、对坐标曲线积分的概念2、对坐标曲线积分的计算、对坐标曲线积分的计算3、两类曲线积分之间的联系、两类曲线积分之间的联系思考题思考题 当曲线当曲线L的参数方程与参数的变化范围给定的参数方程与参数的变化范围给定之后之后(例如(例如L:taxcos ,taysin ,2 , 0 t,a是正常数),试问如何表示是正常数),试问如何表示L的方的方向向(如(如L表示为顺时针方向、逆时针方向)?表示为顺时针方向、逆时针方向)?思考题解答思考题解答曲线方向由参数的变化方向而定曲线方向由参数的变化方向而定.例如例如

14、L:taxcos ,taysin ,2 , 0 t中中当当t从从 0 变变到到 2时时,L取取逆逆时时针针方方向向;反反之之当当t从从 2变变到到 0 时时,L取取顺顺时时针针方方向向.一一 、 填填 空空 题题 : :1 1、 对对 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _的的 曲曲 线线 积积 分分 与与 曲曲 线线 的的 方方 向向 有有 关关 ;2 2、 设设0),(),( dyyxQdxyxPL, ,则则 LLdyyxQdxyxPdyyxQdxyxP),(),(),(),(_ _ _ _ _ _ _ _ _ _ _ _ _;3 3、 在在 公公 式式 dyyxQdx

15、yxPL),(),( dttttQtttP)()(,)()()(,)(中中 , ,下下 限限对对 应应 于于L的的 _ _ _ _ _点点 , ,上上 限限 对对 应应 于于L的的 _ _ _ _ _点点 ;4 4、 两两 类类 曲曲 线线 积积 分分 的的 联联 系系 是是 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. .练练 习习 题题二、二、 计算下列对坐标的曲线积分计算下列对坐标的曲线积分: : 1 1、 L

16、xydx, ,L其中其中为圆周为圆周)0()(222 aayax及及 x轴所围成的在第一象限内的区域的整个边界轴所围成的在第一象限内的区域的整个边界( (按按 逆时针方向绕行逆时针方向绕行) ); 2 2、 Lyxdyyxdxyx22)()(, ,L其中其中为圆周为圆周 222ayx ( (按逆时针方向饶行按逆时针方向饶行) ); 3 3、 ydzdydx, ,其中为有向闭折线其中为有向闭折线ABCD, ,这里这里 的的CBA,依次为点依次为点(1,0,0),(0,1,0),(0,0,1)(1,0,0),(0,1,0),(0,0,1); 4 4、 ABCDAyxdydx, ,其中其中ABCDA

17、是以是以)0 , 1(A,)1 , 0(B, , )0 , 1( C, ,)1, 0( D为顶点的正方形正向边界线为顶点的正方形正向边界线 . .三、三、 设设z轴与重力的方向一致轴与重力的方向一致, ,求质量为求质量为m的质点从位的质点从位置置),(111zyx沿直线移到沿直线移到),(222zyx时重力所作时重力所作的功的功. .四、四、 把对坐标的曲线积分把对坐标的曲线积分 LdyyxQdxyxP),(),(化成化成对弧长的积分对弧长的积分, , L其中其中为为: :1 1、 在在xoy面内沿直线从点面内沿直线从点(0,0)(0,0)到点到点(1,1)(1,1);2 2、 沿抛物线沿抛物

18、线2xy 从点从点(0,0)(0,0)到点到点(1,1)(1,1);3 3、 沿上半圆周沿上半圆周xyx222 从点从点(0,0)(0,0)到点到点(1,1).(1,1).练习题答案练习题答案一、一、1 1、坐标;、坐标; 2 2、-1-1; 3 3、起、起, ,点;点; 4 4、 dzRQdyPdx dsRQP)coscoscos( . .二、二、1 1、;23a 2 2、 2; 3 3、21; 4 4、0 0. .三、三、 )(, 0 , 012zzmgWmgF . .四四、1 1、 LdyyxQdxyxP),(),( LdsyxQyxP2),(),(; 2 2、 LdyyxQdxyxP),(),( LdsxyxxQyxP241),(2),(; 3 3、 LdyyxQdxyxP),(),( LdsyxQxyxPxx),()1(),(22. .

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁