精品试卷沪科版九年级数学下册第26章概率初步专题训练练习题(无超纲).docx

上传人:知****量 文档编号:28220431 上传时间:2022-07-26 格式:DOCX 页数:19 大小:443.68KB
返回 下载 相关 举报
精品试卷沪科版九年级数学下册第26章概率初步专题训练练习题(无超纲).docx_第1页
第1页 / 共19页
精品试卷沪科版九年级数学下册第26章概率初步专题训练练习题(无超纲).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《精品试卷沪科版九年级数学下册第26章概率初步专题训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第26章概率初步专题训练练习题(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第26章概率初步专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的

2、是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B可以用试验次数累计最多时的频率作为概率的估计值C由此估计这种幼苗在此条件下成活的概率约为0.9D如果在此条件下再移植这种幼苗20000株,则必定成活18000株2、下列事件中是必然事件的是( )A小菊上学一定乘坐公共汽车B某种彩票中奖率为1,买10000张该种票一定会中奖C一年中,大、小月份数刚好一样多D将豆油滴入水

3、中,豆油会浮在水面上3、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD4、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A0.92B0.905C0.03D0.95、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,

4、随机抽取一个小球,是红球的概率为( )ABCD6、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )A24B18C16D67、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是100

5、0时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD8、下列事件是必然发生的事件是( )A在地球上,上抛的篮球一定会下落B明天的气温一定比今天高C中秋节晚上一定能看到月亮D某彩票中奖率是1%,买100张彩票一定中奖一张9、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合

6、这一结果的实验可能是()A掷一枚正六面体的骰子,出现1点的概率B一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C抛一枚硬币,出现正面的概率D任意写一个整数,它能被2整除的概率10、下列说法正确的是()A同时投掷两枚相同的硬币,出现“一正一反”的概率是B事件“两个正数相加,和是正数”是必然事件C数2和8的比例中项是4D同一张底片洗出来的两张照片是位似图形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为_(结果保

7、留)2、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _个3、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _4、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_5、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是_三、解答题(5小题,每小

8、题10分,共计50分)1、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子(1)“小明抽到面值为80分的邮票”是_事件(填“随机”“不可能”或“必然”);(2)小明先随机抽取一个盒子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率2、 “垃圾分类”进校园,锦江教育出实招锦江区编写小学生垃圾分类校本实施指导手册,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾

9、,D类指其他垃圾小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶(1)“小明投放的垃圾恰好是有害垃圾”这一事件是_(请将正确答案的序号填写在横线上)必然事件 不可能事件 随机事件(2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率A有害垃圾 B厨余垃圾C可回收垃圾 D其他垃圾3、从1名男生和3名女生中随机抽取参加2022年北京冬季奥运会的志愿者(1)抽取2名,求恰好都是女生的概率;(2)抽取3名,恰好都是女生的概率是 4、甲、乙、丙、丁4人聚会,每人带了一件礼物,4件礼物外盒包装完全相同,将4件礼物放在一起甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙两人抽

10、到的都不是自己带来的礼物的概率5、国庆期间,某电影院上映了长津湖我和我父辈五个扑水的少年三部电影甲、乙两同学从中选取一部电影观看求甲、乙两同学选取同一部电影的概率-参考答案-一、单选题1、D【分析】根据频率估计概率逐项判断即可得【详解】解:A在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D【点睛】本题考查了频

11、率估计概率,掌握理解利用频率估计概率是解题关键2、D【分析】必然事件就是一定发生的事件,根据定义即可解答【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度水的密度,所以油一定浮在水面上,是必然事件,符合题意故选:D【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件3、C【分析】用3的倍数的个数除以数的总数即为

12、所求的概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比4、A【分析】根据频数估计概率可直接进行求解【详解】解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A【点睛】本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键5、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概

13、率的意义及求法用到的知识点为:概率=所求情况数与总情况数之比6、A【分析】根据频率之和为1计算出白球的频率,然后再根据“数据总数频率=频数”,算白球的个数即可【详解】解:摸到红色球、黑色球的频率稳定在0.15和0.45,摸到白球的频率为1-0.15-0.45=0.40,口袋中白色球的个数可能是600.40=24个故选A【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率根据频率之和为1计算出摸到白球的频率是解答本题的关键7、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0

14、.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答8、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比

15、今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意故选:A【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念关键是理解必然事件指在一定条件下一定发生的事件9、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率0.33,故此选项符合题意

16、;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比同时此题在解答中要用到概率公式10、B【分析】根据概率的求法、随机事件、比例中项的概念、位似图形的概念判断即可【详解】解:A、同时投掷两枚相同的硬币,出现“一正一反”的概率是,本选项说法错误,不符合题意;B、事件“两个正数相加,和是正数”是必然事件,本选项说法正确,符合题意;C、数2和8的比例中项是4,本选项说法错误,不符合题意;D、同一张底片洗出来的两张照

17、片是全等图形,不一定是位似图形,本选项说法错误,不符合题意;故选:B【点睛】本题考查的是概率、随机事件、比例中项、位似图形,掌握它们的概念和性质是解题的关键二、填空题1、#【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键2、【分析】先由频率频数数据总数计算出频率,再由题意列出方程求解即可【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋

18、中大约有x个白球,则,解得x20,经检验x20是原方程的解,估计口袋中白球的个数约为20个故答案为:20【点睛】本题考查了用频率估计概率大量反复试验下频率稳定值即概率关键是得到关于黑球的概率的等量关系3、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下: 所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.4、【分析】先用

19、列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可【详解】解:记红球为,白球为,列表得:一共有12种情况,摸到两个都是红球有2种,P(两个球都是红球),故答案是【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件5、【分析】根据列表法求概率即可【详解】解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下,ABCAAAABACBBABBBCCCACBCC共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则小东和小华都抽到游泳项目的概率为故答案为:【点睛】本题考查了列表法求概率,掌握列

20、表法求概率是解题的关键列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比三、解答题1、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等)【分析】(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;(2)列树状图先得到所有的等可能性的结果数,然后找到两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可【详解】解:(1)三张邮票里面没有80分的邮票“小明抽到面值为80分的邮票”是不可能事件,故答案为:不可能;(2)设A、B、C分别代表120分、150分、50分的邮票,列树状图如下所示:由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票

21、的面值恰好相等的结果数有三种P(两个盒子里邮票的面值恰好相等)【点睛】本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键2、(1)(2)【分析】(1)根据随机事件的相关概念可直接进行求解;(2)根据列表法可直接进行求解概率(1)解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;故答案为;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B

22、,B),(C,C),(D,D)共4种【点睛】本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键3、(1);(2)【分析】(1)利用列表法进行求解即可;(2)利用树状图的方法列出所有可能的情况,再求解即可【详解】解:(1)列表如下:男女1女2女3男(女1,男)(女2,男)(女3,男)女1(男,女1)(女2,女1)(女3,女1)女2(男,女2)(女1,女2)(女3,女2)女3(男,女3)(女1,女3)(女2,女3)由表格知,共有12种等可能性结果,其中满足“都是女生”(记为事件A)的结果只有6种,抽取2名,恰好都是女生的概率;(2)列树状图如下:由树状图可知,共有24种等可能性结果

23、,其中满足“恰好都是女生”(记为事件B)的结果只有6种,抽取3名,恰好都是女生的概率,故答案为:【点睛】本题考查列树状图或表格法求概率,掌握列树状图或表格的方法,做到不重不漏的列出所有情况是解题关键4、【分析】画出树状图,然后根据概率公式列式进行计算即可得解【详解】解:设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,根据题意画出树状图如图:一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,甲、乙两人抽到的都不是自己带来的礼物的概率为【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比5、【分析】通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可【详解】解:把长津湖我和我父辈五个扑水的少年三部电影分别记为A、B、C,画树状图如下:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,甲、乙两同学选取同一部电影的概率为【点睛】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁