精品试卷沪科版九年级数学下册第26章概率初步章节训练练习题(无超纲).docx

上传人:知****量 文档编号:28227732 上传时间:2022-07-26 格式:DOCX 页数:19 大小:261.10KB
返回 下载 相关 举报
精品试卷沪科版九年级数学下册第26章概率初步章节训练练习题(无超纲).docx_第1页
第1页 / 共19页
精品试卷沪科版九年级数学下册第26章概率初步章节训练练习题(无超纲).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《精品试卷沪科版九年级数学下册第26章概率初步章节训练练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第26章概率初步章节训练练习题(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第26章概率初步章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于随机事件的概率描述正确的是( )A抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000

2、次就一定有500次“正面朝上”B某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C随机事件发生的概率大于或等于0,小于或等于1D在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率2、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个搅拌均匀后,随机抽取一个小球,是红球的概率为( )ABCD3、下列事件是必然事件的是()A抛一枚硬币正面朝上B若a为实数,则a20C某运动员射击一次击中靶心D明天一定是晴天4、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n265512

3、79310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD5、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、

4、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( )ABCD6、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤如表是实验中记录的部分统计数据:摸球次数104080200500800摸到红球次数3162040100160摸到红球的频率0.30.40.250.20.20.2则袋中的红球个数可能有()A16个B8个C4个D2个7、经过某十字路口的汽车,可能直行,也可能向左转或向右

5、转如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )ABCD8、任意掷一枚骰子,下列事件中:面朝上的点数小于1;面朝上的点数大于1;面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )ABCD9、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABCD10、下列事件中,属于不可能事件的是( )A射击运动员射击一次,命中靶心B从一个只装有白球和红球的袋中摸球,摸出黄球C班里的两名同学,他们的生日是同一天D经过红绿灯路口,遇到绿灯第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某路口的交通信号灯红

6、灯亮35秒,绿灯亮60秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是_2、佳禾同学2021年10月的某一天去电影院看电影长津湖,“买了一张电影票座位号是偶数”属于 _(填“必然事件”、“随机事件”或“不可能事件”)3、如图,在33正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使ABC为等腰三角形的概率是_4、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000发芽种子个数94188281349435531625

7、719812902发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90根据频率的稳定性,估计这种植物种子不发芽的概率是_5、农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:在同样的地质环境下播种,A种

8、子的出芽率可能会高于B种子;当实验种子数里为100时,两种种子的发芽率均为0.96所以它发芽的概率一样;随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98其中不合理的是 _(只填序号)三、解答题(5小题,每小题10分,共计50分)1、某校在宣传“民族团结”活动中,采用四种宣传形式:A器乐,B舞蹈,C朗诵,D唱歌每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题(1)本次调查的学生共有 人;(2)扇形统计图中表示D选项的扇形圆心角的度数

9、是 ,并把条形统计图补充完整;(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率2、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);1个宣传类岗位:垃圾分类知识宣传(用表示)(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为_(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他

10、们恰好都选择同一类岗位的概率3、在一次数学兴趣小组活动中,小李和小王两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字)游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)(1)请用列表或画树状图的方法分别求出小李和小王获胜的概率;(2)这个游戏公平吗?若不公平,请你设计一个公平的游戏规则4、现有A、B两个不透明的袋子,A袋中的两个小球分别标记数字1,2;B袋中的三个小球分别标记数字3,4,5这五个小

11、球除标记的数字外,其余完全相同分别将A、B两个袋子中的小球摇匀,然后小明从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求小明摸出的这两个小球标记的数字之和为5的概率5、随着科技的发展,沟通方式越来越丰富一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;(2)求甲、乙两位同学恰好选择同一种沟通方式的概率-参考答案-一、单选题1、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件

12、发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率【详解】解:共有5个球,其中红球有2个,P(摸到红球)=,故选:A【点睛】此题主要考查概率的意义及求

13、法用到的知识点为:概率=所求情况数与总情况数之比3、B【分析】根据必然事件的定义对选项逐个判断即可【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a20,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键4、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”

14、的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答5、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案【详解】解:有5张形状、大小、质地均相同的卡片,滑冰项目图案的

15、有速度滑冰和花样滑冰2张,从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比6、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可【详解】解:摸球800次红球出现了160次,摸到红球的概率约为,20个球中有白球204个,故选:C【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键7、C【分析】可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得【详解】画“树形图”如图所示:这两辆汽车行

16、驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,一辆向右转,一辆向左转的概率为;故选【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率所求情况数与总情况数之比求解8、D【分析】必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论【详解】解:中面朝上的点数小于是一定不会发生的,故为不可能事件;中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;中面朝上的点数大于是一定会发生的,故为必然事件依据要求进行排序为故选D【点睛】本题考察了事件解题的关键在

17、于区分各种事件的概念9、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是:.故选A【点睛】本题考查了列举法求概率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比10、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意; C、

18、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提二、填空题1、【分析】根据概率公式,即可求解【详解】解:根据题意得:当小明到达该路口时,遇到红灯的概率是 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键2、随机事件【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称

19、确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】“买了一张电影票座位号是偶数”属于随机事件故答案为:随机事件【点睛】本题考查了随机事件的定义,熟悉定义是解题的关键3、【分析】分三种情况:点A为顶点;点B为顶点;点C为顶点;得到能使ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解【详解】如图,AB,若ABAC,符合要求的有3个点;若ABBC,符合要求的有2个点;若ACBC,不存在这样格点这样的C点有5个能使ABC为等腰三角形的概率是故答案为

20、:【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)4、0.1【分析】大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解【详解】观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,故“发芽种子”的概率估计值为0.9这种植物种子不发芽的概率是0.1故答案为:0.1【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率5、【分析】根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.【详解】由表中数据可知,随着实验次数的增加,A种种

21、子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以中的说法是合理的.由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以中的说法不合理;由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以中的说法是合理的;故答案为:【点睛】本题考查了根据频率估计概率,理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.三、解答题1、(1)

22、100;(2)144,见解析;(3)见解析,【分析】(1)根据器乐的占比和人数进行求解即可;(2)用360(D选项的人数)总人数即可得D选项的扇形圆心角度数,然后求出B选项的人数,补全统计图即可;(3)先画树状图得到所有的等可能性的结果数,然后找到恰好是甲、乙的结果数,利用概率公式求解即可【详解】解:(1)由题意得:本次调查的学生共有:3030%=100(人);故答案为:100;(2)表示D选项的扇形圆心角的度数是,喜欢B类项目的人数有:100-30-10-40=20(人),补全条形统计图如图1所示:故答案为:144;(3)画树形图如图2所示:共有12种情况,被选取的两人恰好是甲和乙有2种情况

23、,则被选取的两人恰好是甲和乙的概率是【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图或列表法求解概率,解题的关键在于能够正确读懂统计图2、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解【详解】解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为(2)根据题意画图如下:共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是【点睛】本题主要考查了利用画树状图法或列表法求概率,熟练掌握随机事件A的概率P(A)=事

24、件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键3、(1)小李获胜的概率是,小王获胜的概率是;(2)不公平,见详解.【分析】(1)根据题意画出树状图,得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案;(2)由题意根据各自得出的概率得出游戏不公平,再根据概率公式直接修改为两人获胜的概率相等即可【详解】解:(1)根据题意画图如下:由上图可知,共有12种等可能的情况数,其中指针所指区规内两数和小于11有3种,两数和大于11有6种,则小李获胜的概率是,小王获胜的概率是;(2)由(1)知,小李获胜的概率是,小王获胜的概率是,所以游

25、戏不公平;游戏规则:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和不大于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)【点睛】本题考查的是游戏公平性的判断注意掌握判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比4、【分析】作列表,共有6种可能的结果,摸出的这两个小球标记的数字之和为5的结果有2种,再由概率公式求解即可【详解】解:列表如下:123(1,3)(2,3)4(1,4)(2,4)5(1,5)(2,5)共有6种等可能结果,其中小明摸出的两个

26、小球标记的数字之和为5有2种,P(摸出的两个小球标记的数字之和为5)【点睛】本题考查了树状图法或列表求概率,正确画出树状图或列表是解题的关键,用到的知识点为:概率所求情况数与总情况数之比5、(1)3种可能,分别是“微信”“QQ”,“电话”(2)【分析】(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解(1)解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.(2)解:画出树状图,如图所示 所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况, 故两人恰好选中同一种沟通方式的概率为【点睛】本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁