《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数难点解析试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数难点解析试题(含详细解析).docx(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在直角ABC中,AC2,则tanA的值为( )ABCD2、三角形在正方形网格纸中的位置如图所示,则tan
2、的值是( )A12B43C35D453、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD4、如图,琪琪一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是( )A地在地的北偏西方向上B地在地的南偏西方向上CD5、在正方形网格中,ABC在网格中的位置如图,则sinB的值为()ABCD6、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD7、如图1所示,DEF中,DEF90,D30,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于
3、点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D488、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:;点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD9、如图,若的半径为R,则它的外切正六边形的边长为( )ABCD10、将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、第6号台风“烟花”于2021年7月25日12时30分前后登陆舟山普陀区,登陆时
4、强度为台风级,中心最大风速38米/秒此时一艘船以27nmile/h的速度向正北航行,在A处看烟花S在船的北偏东15方向,航行40分钟后到达B处,在B处看烟花S在船的北偏东45方向(1)此时A到B的距离是 _;(2)该船航行过程中距离烟花S中心的最近距离为 _(提示:sin15)2、当0时,将二次函数yx2x(0x)的图象G,绕原点逆时针旋转得到图形G均是某个函数的图象,则的最大值为 _3、如图,直线MN过正方形ABCD的顶点A,且NAD30,AB2,P为直线MN上的动点,连BP,将BP绕B点顺时针旋转60至BQ,连CQ,CQ的最小值是 _4、如图,等边的边长为2,点O是的中心,绕点O旋转,分别
5、交线段于D,E两点,连接,给出下列四个结论:;四边形的面积始终等于;周长的最小值为3其中正确的结论是_(填序号)5、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN若,(1)矩形ABCD的面积为_;(2)的值为_三、解答题(5小题,每小题10分,共计50分)1、计算:2、平面直角坐标系中,过点M的O交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点,交OM的反向延长线于点N(1)求经过A、N、B三点的抛物线的解析式(2)如图,点E为(1)中抛物线的顶点,连接EN,判断直线EN与O的位置关系,并说明理由(3)如图,连接MD、
6、BD,过点D的直线交抛物线于点P,且,直接写出直线DP的解析式3、如图,在中,(1)尺规作图:作的垂直平分线交于点(保留痕迹,不写作法)(2)在(1)的作图下,试求的值(结果保留根号)4、如图,已知抛物线(为常数,且0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;(3)在(1)的条件下,直线BD上是否存在点E,使AEC=45?若存在,请直接写出点E的横坐标;若不存在,请说明理由5、在O中,四边形ABCD是平行四边形(
7、1)求证:BA是O的切线;(2)若AB6,求O的半径;求图中阴影部分的面积-参考答案-一、单选题1、B【分析】先利用勾股定理求出BC的长,然后再求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中2、A【分析】根据在直角三角形中,正切值等于对边比上邻边进行求解即可【详解】解:如图所示,在直角三角形ABC中ACB=90,AC=2,BC=4,tan=ACBC=24=12,故选A【点睛】本题主要考查了求正切值,解题的关键在于能够熟练掌握正切的定义3、B【分析】由坡度定义可得
8、位置升高的高度即为坡角所对的直角边根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度【详解】解:由题意得,BC:AC=1:2 设BC=x,则AC=2xAB=10, BC2+ AC2=AB2,x2+ (2x)2=102,解得:x=故选:B【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化4、B【分析】根据题意可知,由此即可得到即可判断A;由可以判断B;由可以判断C;求出即可判断D【详解】解:如图所示:由题意可知,即在处的北偏西,故A不符合题意;,地在地的南偏西方向上,故B不符合题意;,故C错误,故D不符合题意故选B【点睛】本题考查
9、的是解直角三角形和方向角问题,熟练掌握方向角的概念是解题的关键5、A【分析】利用勾股定理先求出AB的长度,最后利用正弦值的定义得到,进而得到最终答案【详解】解:如图所示在中,由勾股定理可得: 故选:A【点睛】本题主要是考察了勾股定理和锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键6、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键7、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面
10、积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键8、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90,CEBH,BFC=BCF+CBF=CBF+ABH=90,BCF=ABH,ABHBCE,AH=BE,E是正方形A
11、BCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形ABCD是正方形,AB=BC,ABC=90,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键9、B【分析】如图连结OA,OB,OG,根据六边形ABCDEF为圆外切正六边形,得出AOB=60AOB为等边三角形,根据点G为切点,可得OGAB,可得OG平分AOB,得出AOC=,根据锐角三角函数求解即可【详解】解:如图连结OA,OB,OG,六边形ABCDEF为圆外切正六边
12、形,AOB=3606=60,AOB为等边三角形,点G为切点,OGAB,OG平分AOB,AOC=,cos30=,故选择B【点睛】本题考查圆与外切正六边形性质,等边三角形性质,锐角三角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键10、D【分析】由AFECFD90得,根据折叠的定义可以得到CBCF,则,即可求出的值,继而可得出答案【详解】AFECFD90,由折叠可知,CBCF,矩形ABCD中,ABCD,故选:D【点睛】本题考查了折叠变换的性质及锐角三角函数的定义,解题关键是得到CBCF二、填空题1、 18 nmile nmile# nmile【解析】【分析】如图,过作于
13、 先由路程等于速度乘以时间求解 再利用sin15求解 再设 而 再利用建立方程,再解方程,从而可得答案.【详解】解:如图,过作于 由题意可得: 设 则 设 而 解得: 经检验符合题意;所以:该船航行过程中距离烟花S中心的最近距离为: nmile.故答案为:18 nmile, nmile.【点睛】本题考查的是解直角三角形的实际应用,熟练的利用的值求解是解本题的关键.2、【解析】【分析】根据题意,找到图象G的切线,进而根据旋转的性质即可求得的最大值【详解】解:将二次函数yx2x(0x)的图象G,逆时针旋转得到图形G均是某个函数的图象,设过原点的直线当yx2x,存在唯一交点时即解得设为上一点,过点作
14、轴,则当图象旋转时,与轴相切,符合函数图象,故即故答案为:30【点睛】本题考查了旋转的的性质,抛物线与直线交点问题,解直角三角形,理解题意求得直线与轴的夹角是解题的关键3、#【解析】【分析】如图,连接交于 则 先证明 把绕顺时针旋转得到 证明 可得三点共线,在上运动,过作于 则重合时,最短,再求解 从而可得答案.【详解】解:如图,连接PQ交于 则 是等边三角形, 正方形 把绕顺时针旋转得到 则 三点共线, 在上运动,过作于 则重合时,最短, 是等边三角形,记交于 所以CQ的最小值是,故答案为:【点睛】本题考查的是正方形的性质,相似三角形的性质,锐角三角函数的应用,得到的运动轨迹是解本题的关键.
15、4、【解析】【分析】如图:连接OB、OC,利用等边三角形的性质得ABO=OBC=OCB=30,再证明BOD=COE,可证BODCOE,即BD=CE、OD=OE,则可对进行判断;利用 SBOD=SCOE得到四边形ODBE的面积 =13SABC=33,则可对进行判断;再作OHDE,则DH=EH,计算出SDOE=34OE2,利用SDOE随OE的变化而变化和四边形ODBE的面积为定值可对进行判断;由于BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OEBC时,OE最小,BDE的周长最小,计算出此时OE的长则可对进行判断【详解】解:连接OB、OC,如图,等边ABC=ACB=60,点O是A
16、BC的中心,OB=OC,OB、OC分别平分ABC和ACB,ABO=OBC=OCB=30BOC=120,即BOE+COE=120,而DOE=120,即BOE+BOD=120,BOD=COE,在BOD和COE中BOD=COEBO=COOBD=OCE BODCOE,BD=CE,OD=OE,所以正确;SBOD=SCOE四边形ODBE的面积 =SOBC=13SABC=133422=33,故正确;如图:作OHDE,则DH=EH,DOE=120,ODE=_OEH=30, OH=12OE,HE =3OH=32OE, DE=3OE, SODE=1212OE3OE=34OE2,即SDOE随OE的变化而变化,而四边
17、形ODBE的面积为定值, SODESBDE;所以错误;BD=CE,BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=2+DE=2+OE当OEBC时,OE最小,BDE的周长最小,此时 OE=33,BDE周长的最小值=2+1=3,所以止确故填【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质等知识点,灵活应用相关知识成为解答本题的关键5、 【解析】【分析】(1)矩形ABCD中,由折叠可得DF=AD=3,在中,用勾股定理求得,即可求得矩形ABCD的面积;(2)由折叠可得,矩形ABCD中,四点共圆,故,设,在中,由勾股定理得: ,即可求的值.【详解】(1)矩形ABCD中
18、,由折叠可得DF=AD=3,在中,矩形ABCD的面积=,故答案为:;(2)将沿DE折叠,使点A的对应点F恰好落在边BC上,矩形ABCD中,四点共圆,设,则,在中,由勾股定理得:,即,解得,=.故答案为:【点睛】本题考查了勾股定理、矩形的性质、锐角三角函数等知识,掌握相应的定理是解答此题的关键.三、解答题1、0【解析】【分析】先将特殊角锐角三角锐角三角函数值代入,再合并,即可求解【详解】解:【点睛】本题主要考查了锐角三角函数的混合运算,熟练掌握特殊角锐角三角锐角三角函数值是解题的关键2、(1);(2)直线EN与O相切,理由见解析;(3)或【解析】【分析】(1)结合题意,根据圆和勾股定理的性质,计
19、算得圆的半径,从而得,;根据抛物线轴对称的性质,得经过A、N、B三点的抛物线,对称轴为:;通过列二元一次方程组并求解,即可得到答案;(2)根据抛物线的性质,计算得;根据勾股定理的性质,得,;根据圆的性质,得;根据勾股定理的逆定理,通过,推导得,结合圆的切线的定义,即可得到答案;(3)结合(2)的结论,根据特殊角度三角函数的性质,得,分当点P纵坐标大于0和小于0两种情况,根据圆周角、圆心角的性质,推导得;根据含角直角三角形和勾股定理的性质,计算得点坐标,再通过待定系数法求解一次函数解析式,即可得到答案【详解】(1)O过点M O交x轴于A、B两点(点A在点B的左侧), , 经过A、N、B三点的抛物
20、线,对称轴为: O交OM的反向延长线于点N 设经过A、N、B三点的抛物线为: 经过A、N、B三点的抛物线,对称轴为: 经过A、N、B三点的抛物线为:;(2)经过A、N、B三点的抛物线为:,且对称轴为:当时,抛物线取最小值,即 , 直线EN与O相切;(3) 如图,当点P纵坐标大于0时,直线交O于点Q,连接,过点Q作,交OB于点K , 设直线DP的解析式为: ;如图,当点P纵坐标小于0时,直线交O于点Q,连接,过点Q作,交OB于点K, 设直线DP的解析式为: ;直线DP的解析式为:或【点睛】本题考查了圆、二次函数、一次函数、勾股定理、直角三角形、轴对称、三角函数的知识;解题的关键是熟练掌握圆的对称
21、性、圆周角、圆心角、二次函数图像、勾股定理及其逆定理、切线、特殊角度三角函数的性质,从而完成求解3、(1)见解析;(2)【解析】【分析】(1)作线段的垂直平分线即可;(2)由垂直平分线的性质求出,设,在三角形中利用三角函数即可求解【详解】(1)作图如下,(2)根据垂直平分线的性质知,在三角形中,设,在三角形中,【点睛】本题考查的是作图基本作图、线段垂直平分线的性质、三角函数,熟知线段垂直平分线的作法是解答此题的关键4、(1):y=x2-x-2;(2)a=或;(3)在直线BD上不存在点E,使AEC=45理由见解析【解析】【分析】(1)令y=0可得A和B两点的坐标,把点B的坐标代入直线y=-x+b
22、中可得b的值,根据点D的横坐标为-5,可得点D的坐标,将点D的坐标代入抛物线的解析式中可得答案;(2)因为点P在第一象限内的抛物线上,所以ABP为钝角因此若两个三角形相似,只可能是ABCAPB或ABCPAB如图1和图2,按照以上两种情况进行分类讨论,分别计算;(3)根据OA=OC=2,AOC=90画圆O,半径为2,可知若优弧上存在一点E与A,C构建的AEC=45,再证明BD与O相离,圆外角小于圆上角,可得结论【详解】解:(1)抛物线y=a(x+2)(x-4),令y=0,解得x=-2或x=4,A(-2,0),B(4,0),把B(4,0)代入直线y=x+b中,b=3,直线的解析式为y=-x+3,当
23、x=-5时,y=-(-5)+3=,D(-5,),点D(-5,)在抛物线y=a(x+2)(x-4)上,a(-5+2)(-5-4)=,a=,抛物线的函数表达式为:y=(x+2)(x-4)=x2-x-2;(2)由抛物线解析式,令x=0,得y=-8a,C(0,-8a),OC=8a点P在第一象限内的抛物线上,ABP为钝角若两个三角形相似,只可能是ABCAPB或ABCPAB过点P作PNx轴于点N,若ABCAPB,则有BAC=PAB,如图1所示,设P(x,y),则ON=x,PN=y,tanBAC=tanPAB,即:,y=4ax+8a,P(x,4ax+8a),代入抛物线解析式y=a(x+2)(x-4),得a(
24、x+2)(x-4)=4ax+8a,整理得:x2-6x-16=0,解得:x=8或x=-2(与点A重合,舍去),P(8,40a),ABCAPB,即,解得:a=;若ABCPAB,则有ABC=PAB,如图2所示,与同理,可求得:y=2ax+4a,P(x,2ax+4a),代入抛物线解析式y=a(x+2)(x-4),得a(x+2)(x-4)=2ax+4a,整理得:x2-4x-12=0,解得:x=6或x=-2(与点A重合,舍去),P(6,16a),ABCPAB,即,解得:a=;综上所述,a=或;(3)在(1)的条件下,二次函数的解析式为:y=x2-x-2;当x=0时,y=-2,C(0,-2),OA=OC=2
25、,如图3,以O为圆心2为半径画圆,在上取一点E1,过点O作OFBD于F,AOC=90,AE1C=45,在直线y=-x+3中,OM=3,OB=4,BM=5,SOBM=34=5OF,OF=2,直线BD与O相离,AEC45,在直线BD上不存在点E,使AEC=45【点睛】本题是二次函数综合题,主要考查了待定系数法,三角形的面积公式,解直角三角形,直线和圆的位置关系,圆周角的性质,坐标和图形的性质等知识,解(1)的关键是确定点D的坐标,解(2)的关键是利用分类讨论的思想;解(3)的关键是作出辅助线,是一道难度比较大的中考常考题5、(1)证明见解析;(2),【解析】【分析】(1)连接AO,由,四边形ABC
26、D是平行四边形,即得推得为等边三角形,即可得BAO=BAC+CAO=90,即BA是O的切线(2)由(1)有A0=将阴影面积拆为相等的两部分,其中左侧部分为扇形ACO面积减去三角形ACO面积,由扇形面积公式,等边三角形面积公式计算后乘2即可【详解】(1)证明:连接OA四边形ABCD是平行四边形AD/BEADC=DCO又ACD=ADCACO=ACD +DCO=2ADC又2ADC=AO=AC又OC=AO为等边三角形ACO=CAO=60,ACD =DCO=30又AB/CDBAC=ACD=30BAO=BAC+CAO=30+60=90BA是O的切线(2)由(1)可知BAO=90,BOA=60AO=连接AO,与CD交于点MAC=,OAC=60CM=AO=,AOC=60【点睛】本题是一道圆内的综合问题,考察了证明某线是切线、平行四边形性质、等弧的性质、解直角三角形、等边三角形性质、勾股定理、扇形面积公式等,需熟练掌握这些性质及定理,而作出正确的辅助线是解题的关键