《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数难点解析练习题(含详解).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数难点解析练习题(含详解).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ACB60,半径为1的O切BC于点C,若将O在直线CB上沿某一方向滚动,当滚动到O与CA也相切时,
2、圆心O移动的水平距离为( )ABC 或D或2、学习了三角函数的相关知识后,小丽测量了斜坡上一棵垂直于地面的大树的高度如图,小丽先在坡角为的斜坡上的点A处,测得树尖E的仰角为,然后沿斜坡走了10米到达坡脚B处,又在水平路面上行走20米到达大树所在的斜坡坡脚C处,大树所在斜坡的坡度,且大树与坡脚的距离为15米,则大树的高度约为( )(参考数据:结果精确到0.1)A10.9米B11.0米C6.9米D7.0米3、如图,某停车场入口的栏杆,从水平位置绕点O旋转到的位置,已知的长为5米若栏杆的旋转角,则栏杆A端升高的高度为( )A米B米C米D米4、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方
3、向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里5、已知,在矩形中,于,设,且,则的长为( )ABCD6、计算的值等于( )AB1C3D7、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形8、如图,在RtABC中,ABC90,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD9、如图,ABC的顶点是正方形网格的格点,则sinACB的值为()A3BCD10、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D5第
4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_2、在ABC中,(2cosA)2+|1tanB|0,则ABC一定是:_3、助推轮椅可以轻松解决起身困难问题如图1是简易结构图,该轮椅前O1和后轮O2的半径分别为0.6dm和3dm,竖直连接处CO11dm,水平连接处BD与拉伸装置DE共线,BD2dm,座面GF平行于地面且GFDE4.8dm,HF是轮椅靠背,ADE始终保持角度不变初始状态时,拉伸杆AD的端点A
5、在点B正上方且距地面2.2dm,则tanADB的值为 _如图2,踩压拉伸杆AD,装置随之运动,当AD踩至与BD重合时,点E,F,H分别运动到点E,F,H,此时座面GF和靠背FH连成一直线,点H运动到最高点H,且H,F,O2三点正好共线,则HO2的长为 _dm4、如图所示,草坪边上有互相垂直的小路m,n,垂足为E,草坪内有一个圆形花坛,花坛边缘有A,B,C三棵小树在不踩踏草坪的前提下测圆形花坛的半径,某同学设计如下方案:若在小路上P,Q,K三点观测,发现均有两树与观测点在同一直线上,从E点沿着小路n往右走,测得123,EQ16米,QK24米;从E点沿着小路m往上走,测得EP15米,BPm,则该圆
6、的半径长为_米5、如图, 小明沿着坡度 的坡面由 到 直行走了 13 米时, 他上升的高度 _米三、解答题(5小题,每小题10分,共计50分)1、如图, 在 中, 点 分别在 边和 边上,沿着直线 翻折 ,点 落在 边上,记为点 ,如果 ,则 _2、小明周末沿着东西走向的公路徒步游玩,在A处观察到电视塔在北偏东37度的方向上,5分钟后在B处观察到电视塔在北偏西53度的方向上已知电视塔C距离公路AB的距离为300米,求小明的徒步速度(精确到个位,)3、已知直线m与O,AB是O的直径,ADm于点D(1)如图,当直线m与O相交于点E、F时,求证:DAE=BAF (2)如图,当直线m与O相切于点C时,
7、若DAC=35,求BAC的大小;(3)若PC2,PB2,求阴影部分的面积(结果保留)4、计算下列各式:(1)sin604cos230+sin45tan60;(2)5、如图,在ABCD中,D60,对角线ACBC,O经过点A、点B,与AC交于点M,连接AO并延长与O交于点F,与CB的延长线交于点E,ABEB(1)求证:EC是O的切线;(2)若AD2,求O的半径-参考答案-一、单选题1、D【分析】当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,则四边形OCFW是矩形,然后根据锐角三角函数的知识求解;同理求出另一种情况的值【详解】解:如图1,当圆O滚动到圆W位
8、置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,则四边形OCFW是矩形,OW=CF,WF=1,ACB60,WCF=ACB=30,所以点O移动的距离为OW=CF=如图2,当圆O滚动到圆O位置与CA,CB相切,切点分别为F,E,连接OO,OE,OC,OF,OC,则四边形OCEO是矩形,OO=CE,ACB60,ACE120,OCE=60,点O移动的距离为OO=CE=,故选:D【点睛】此题考查了切线的性质与切线长定理,矩形的判定与性质,以及三角函数等知识解此题的关键是根据题意作出图形,注意数形结合思想的应用2、D【分析】过点A作AGED交ED延长线于点G,过点A作AFCB,交C
9、B的延长线于点F,延长BC交ED的延长线于点H,可知四边形AFHG为矩形,解直角三角形ABF得AF=5,BF=,解直角三角形CDH得DH=9,CH=12,从而得到AG,再通过解直角三角形AGE求得EG的长,进一步得出结论【详解】解:过点A作AGED交ED延长线于点G,过点A作AFCB,交CB的延长线于点F,延长BC交ED的延长线于点H,如图,则四边形AFHG为矩形,AG=FH,GH=AF在RtABF中, 在RtCHD中, 可设, 由勾股定理得, 解得, 在RtAGE中, 故选:D【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键3、C【分
10、析】过点A作ACAB于点C,根据锐角三角函数的定义即可求出答案【详解】解:过点A作ACAB于点C,由题意可知:AO=AO=5,sin=,AC=5sin,故选:C【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型4、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90,CAD=45,BAD=60,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键5、B【分析】根据同角
11、的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC,再利用勾股定理求出BC,然后根据矩形的对边相等可得AD=BC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=ADE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=4=,由勾股定理得,BC=,四边形ABCD是矩形,AD=BC=故选:B【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键6、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆
12、相关数据是解题的关键7、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解8、D【分析】根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90,C+DBC=90,A=DBC,在RtAB
13、C中,tanA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直角三角形中的应用是解题关键9、D【分析】连接格点AD,构造直角三角形,先计算AC,再算ACB的正弦即可【详解】连接格点A、D,如图在RtADC中,AD3,CD1,CAsinACB故选:D【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键10、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,
14、然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=15=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形二、填空题1、【解析】【分析】连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P根据旋转作
15、图和“心”形的对称性得到COB=30,BOG=60,设OM=m,得到点B坐标为,把点B代入,求出m,即可得到点A、B坐标,根据勾股定理即可求出AB【详解】解:如图,连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P点C绕原点O旋转60得到点D,COD=60,由“心”形轴对称性得AB为对称轴,OB平分COD,COB=30,BOG=60,设OM=m,在RtOBM中,BM=,点B坐标为,点B在抛物线上,解得,点B坐标为,点A坐标为,AP=,BP=9,在RtABP中,故答案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点
16、B坐标是解题关键2、等腰直角三角形【解析】【分析】根据非负数的意义和特殊锐角的三角函数值求出角A和角B,进而确定三角形的形状【详解】解:因为(2cosA)2+|1tanB|0,所以2cosA0,且1tanB0,即cosA,tanB1,所以A45,B45,所以 所以ABC是等腰直角三角形,故答案为:等腰直角三角形【点睛】本题考查特殊锐角三角函数值以及三角形的判定,掌握特殊锐角的三角函数值是正确判断的前提3、 ; ;【解析】【分析】根据题意求得到的距离,进而根据正切的定义可得;如图2,过点作交的延长线于点,解直角三角形即可解决问题【详解】解:拉伸杆AD的端点A在点B正上方且距地面2.2dm,BD2
17、dm,O1半径分别为0.6dm,竖直连接处CO11dm,设到的距离为,则dm如图1,连接,过点作,中ADE始终保持角度不变GFDE,四边形是平行四边形装置运动后,如图2,过点作交的延长线于点,则设,则,解得故答案为:,【点睛】本题考查了垂径定理,解直角三角形的应用,两图中有一个角是相等的,找到这个角的并求得它的正切值为是解题的关键4、#【解析】【分析】设圆心为,过点作,连接交于点,根据题意可证明四边形是矩形,进而求得,证明,根据求得,设的半径为,在中,勾股定理即可求解【详解】如图,设圆心为,过点作,连接交于点,根据题意在小路上P,Q,K三点观测,发现均有两树与观测点在同一直线上,且12,23,
18、三点共线四边形是矩形设的半径为,在中,则解得故答案为:【点睛】本题考查了两点确定一条直线,三角函数,垂径定理,勾股定理,相似三角形的性质与判定,矩形的性质,等边对等角,理清各线段长,并添加辅助线是解题的关键5、【解析】【分析】根据坡度的定义求得,即可求得的长【详解】解:设,则根据勾股定理可得故答案为:5【点睛】考查了解直角三角形的应用一坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度=垂直高度水平宽度是解题的关键。三、解答题1、#【解析】【分析】过点作于点,设,则,解直角三角形即可求得,即的值【详解】解:如图,过点作于点在 中,是等腰直角三角形=设,则,沿着直线翻折,点落在边上,记为点,在中
19、,即解得故答案为:【点睛】本题考查了勾股定理,轴对称的性质,解直角三角形,根据题意构造直角三角形是解题的关键2、126米/分钟【解析】【分析】过作于,则米,由解直角三角形求出AD和BD的长度,则求出AB的长度,即可求出小明的速度【详解】解:过作于,则米,同理:速度:6315126(米/分钟)【点睛】本题考查了解直角三角形的应用,以及解直角三角形,解题的关键是正确求出AD和BD的长度3、(1)见解析;(2);(3)【解析】【分析】(1)通过已知条件可知,再通过同角的补交相等证得,即可得到答案;(2)利用,得,再通过OA=OC,得;(3)现在中,利用勾股定理求得半径r=2,再通过,得,即可求得,那
20、么,即可求解【详解】解:(1)如图,连接BFADmAB是O的直径,DAE=BAF(2)连接OC直线m与O相切于点CADmOA=OC(3)连接OC直线m与O相切于点C设半径OC=OB=r在中,则:解得:r=2,即OC=r=2【点睛】本题考查了圆切线、内接四边形的性质,以及解直角三角形的应用,扇形面积求法,解答此题的关键是掌握圆的性质4、(1)(2)【解析】【分析】(1)根据特殊角的三角函数值化简,故可求解;(2)根据特殊角的三角函数值化简,故可求解【详解】(1)sin604cos230+sin45tan60=4+=(2)=【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值、二次根
21、式的运算即完全平方公式的运算5、(1)见详解;(2)4【解析】【分析】(1)连接OB,根据平行四边形的性质得到ABC=D=60,求得BAC=30,根据等腰三角形的性质和三角形的外角的性质得到ABO=OAB=30,于是得到结论;(2)根据平行四边形的性质得到BC=AD=2 ,过O作OHAM于H,则四边形OBCH是矩形,解直角三角形即可得到结论【详解】(1)证明:连接OB,四边形ABCD是平行四边形,ABC=D=60,ACBC,ACB=90,BAC=30,BE=AB,E=BAE,ABC=E+BAE=60,E=BAE=30,OA=OB,ABO=OAB=30,OBC=30+60=90,OBCE,EC是O的切线;(2)解:四边形ABCD是平行四边形,BC=AD=2 ,过O作OHAM于H,则四边形OBCH是矩形,OH=BC=2,OA=4, O的半径为4【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键