《京改版七年级数学下册第八章因式分解难点解析练习题(含详解).docx》由会员分享,可在线阅读,更多相关《京改版七年级数学下册第八章因式分解难点解析练习题(含详解).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版七年级数学下册第八章因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列由左到右的变形,属于因式分解的是( )ABCD2、n为正整数,若2an14an+1的公因式是M,则M等于()A
2、an1B2anC2an1D2an+13、下列各式中从左到右的变形,是因式分解的是( )ABCD4、因式分解:x34x2+4x()ABCD5、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2ABCD6、下列由左到右的变形,是因式分解的是( )ABCD7、多项式与的公因式是( )ABCD8、下列各式的因式分解中正确的是( )ABCD9、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)10、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2
3、x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将4a28ab+4b2因式分解后的结果为_2、分解因式:a32a2b+ab2_3、把多项式分解因式结果是_4、因式分解:(x2+y2)24x2y2=_5、因式分解:3x3+12x_三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1);(2) (7x22y2)2(2x27y2)22、因式分解(1)(2)(x1)(x3)83、分解因式:4、把下列各式因式分解:(1)(2)5、将下列各式分解因式:(1); (2)-参考答案-一、单选题1、A【解析】【分析
4、】直接利用因式分解的定义分别分析得出答案【详解】解:、,是因式分解,符合题意、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式2、C【解析】【分析】根据提取公因式的方法计算即可;【详解】原式,2an14an+1的公因式是,即;故选C【点睛】本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键3、B【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式
5、分解,也叫做分解因式根据定义即可进行判断【详解】解:A,单项式不能因式分解,故此选项不符合题意;B,是因式分解,故此选项符合题意;C,是整式计算,故此选项不符合题意;D,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B【点睛】本题主要考查了因式分解的定义解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算4、A【解析】【分析】根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案【详解】解:原式故选:A【点睛】本题考查的是因式分解的基础应用,熟练掌握因式分解
6、的一般解题步骤,以及各种因式分解的方法是解题的关键5、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2有因式x1的是故选:D【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即6、A【解析】【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A【点睛】
7、本题考查了分解因式的定义解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式7、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得【详解】解:,则多项式与的公因式是,故选:B【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键8、D【解析】【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解【详解】A a2+abac=a(a-b+c) ,故本选项错误;B 9xyz6x2y2=3xy(3z2xy),故本选项错误;C
8、 3a2x6bx+3x=3x(a22b+1),故本选项错误; D ,故本选项正确故选:D【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键9、C【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式10、D【解析】【分析】分解
9、因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键二、填空题1、【解析】【分析】先提取公因式4,再利用完全平方式即可求出结果【详解】故答案为:【点睛】本题考查因式分解掌握提公因式和公式法进行因式分解是解答本题的关键2、【解析】【分析】先提取公因式a,再利用完全平方公式因式分解【详解
10、】解:,故答案为:【点睛】本题考查综合利用提公因式法和公式法因式分解一般有公因式先提取公因式,再看是否能用公式法因式分解3、【解析】【分析】利用平方差公式分解得到结果,即可做出判断【详解】解:= 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键4、(x-y)2(x+y)2【解析】【分析】根据平方差公式和完全平方公式因式分解即可;【详解】原式,;故答案是:【点睛】本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键5、【解析】【分析】先提公因式,然后再利用平方差公式求解即可【详解】解:故答案为【点睛】此题考查了因式分解的方法,熟练掌握提公因式法和平方差
11、公式是解题的关键三、解答题1、(1);(2)【解析】【分析】(1)先提出公因式,再利用完全公式,即可求解;(2)先利用平方差公式分解,再提公因式,然后利用平方差公式,即可求解【详解】解:(1) ;(2) 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键2、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x1)(x3)8=x2-4x+3-8=x2-4x-5=(x-5)(x+1)【
12、点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法3、【解析】【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可【详解】解:原式=【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键4、(1);(2)【解析】【分析】(1)先提取公因式 再按照完全平方公式分解因式即可;(2)先利用平方差公式分解,再利用平方差公式进行第二次分解,从而可得答案.【详解】解:(1) (2) 【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键,一定要注意分解因式要彻底.5、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可【详解】解:(1)=;(2)= =【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解