最新京改版七年级数学下册第八章因式分解难点解析试题(含解析).docx

上传人:知****量 文档编号:28206776 上传时间:2022-07-26 格式:DOCX 页数:16 大小:187.44KB
返回 下载 相关 举报
最新京改版七年级数学下册第八章因式分解难点解析试题(含解析).docx_第1页
第1页 / 共16页
最新京改版七年级数学下册第八章因式分解难点解析试题(含解析).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《最新京改版七年级数学下册第八章因式分解难点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《最新京改版七年级数学下册第八章因式分解难点解析试题(含解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y2、关于x的二

2、次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是()A6B6C12D123、下列因式分解正确的是( )ABCD4、下列多项式中,不能用公式法因式分解的是( )ABCD5、如图,边长为a,b的长方形的周长为18,面积为12,则a3bab3的值为( )A216B108C140D6846、下列因式分解正确的是( )A16m24(4m2)(4m2)Bm41(m21)(m21)Cm26m9(m3)2D1a2(a1)(a1)7、下列各式中,从左到右的变形是因式分解的是( )ABCD8、已知a+b=2,a-b=3,则等于( )A5B6C1D9、下列各式从左至右是因式分解的是( )ABCD10

3、、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_2、把多项式分解因式的结果是_3、当x_时,x22x+1取得最小值4、在实数范围内因式分解:x26x+1_5、单项式4m2n2与12m3n2的公因式是_三、解答题(5小题,每小题10分,共计50分)1、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)1+x+x(x+1)=(1+x)2(1+x)=(1+x)3(1)

4、上述分解因式的方法是 ,共应用了 次(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法 次,结果是 (3)分解因式:1+x+x(x+1)+x(x+1)2+x(x+1)n(n为正整数)结果是 2、因式分解:3、因式分解:(1);(2) (7x22y2)2(2x27y2)24、分解因式:(1);(2)5、(1)计算:(2)计算:(3)分解因式:;(4)分解因式:-参考答案-一、单选题1、D【解析】【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有

5、公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键2、D【解析】【分析】利用完全平方公式的结构特征判断即可求出a的值【详解】解:关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,ax=12x故选:D【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键3、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选

6、项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键4、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.5、D【解析】【分析】根据长方形的周长可知,由长方形的面积,可得,将代数式a3bab3因式分解,进而代入代数式求值即可【详解】边长为a,b的长方形的周长为18

7、,面积为12,故选D【点睛】本题考查了因式分解,代数式求值,整体代入是解题的关键6、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义一个多项式有公因式首先提取公因式,

8、然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止7、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.8、B【解析】【分析】根据平方差公式因式分解即可求解【详

9、解】a+b=2,a-b=3,故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键9、A【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解10、C【解析】【分析】根据因式分解的定义逐个判断即可【详解】

10、解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式二、填空题1、#【解析】【分析】先提取公因式,然后利用平方差公式进行因式分解即可【详解】解:,故答案为: 【点睛】题目主要考查因式分解的提公因式法和平方差公式法的综合运用,熟练掌握因式分解方法是解题关键2、【解析】【分析】先提公因式,再根

11、据十字相乘法因式分解即可【详解】故答案为:【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键3、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解【详解】解:,当x1时,x22x+1取得最小值故答案为:1【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式4、【解析】【分析】将该多项式拆项为,然后用平方差公式进行因式分解【详解】故答案为:【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止5、4m2n2【解析】【分析】找到系数的公共部分,再找到因式的公共部分即可【详解】解:由于4和12的公因数是4,m2n2和

12、m3n2的公共部分为m2n2,所以4m2n2与12m3n2的公因式是4m2n2故答案为4m2n2【点睛】本题主要考查公因式,熟练掌握如何去找公因式是解题的关键三、解答题1、(1)提公因式法;2;(2)2021;(x+1)2022;(3)(1+x)n+1【解析】【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;(3)结合(1)中解题方法得出答案【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答

13、案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+x(x+1)n=(1+x)n+1故答案为:(1+x)n+1【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键2、【解析】【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可【详解】解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等3、(1);(2)【解析】【分析】(1)先提出公因式,再利用完全公式,即可求解;(2)先利用平方差公式分解,再提公因式,然后利用平

14、方差公式,即可求解【详解】解:(1) ;(2) 【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键4、(1);(2)【解析】【分析】(1)提取m,后用完全平方公式分解;(2)提取a-b,后用平方差公式分解【详解】解:(1)原式(2)原式【点睛】本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键5、(1);(2);(3);(4)【解析】【分析】(1)根据多项式乘以单项式,利用多项式的每一项分别与单项式相乘,再把积相加进行计算即可;(2)首先计算小括号,再合并化简中括号里面,最后计算除法即可(3)原式提取公因式即可;(4)原式利用平方差公式 分解即可【详解】解:(1)原式;(2)原式,(3)原式;(4)原式【点睛】此题主要考查了整式的混合运算和提公因式法与公式法的综合运用,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁