《京改版七年级数学下册第八章因式分解综合测评练习题.docx》由会员分享,可在线阅读,更多相关《京改版七年级数学下册第八章因式分解综合测评练习题.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版七年级数学下册第八章因式分解综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,正确的因式分解是( )ABCD2、下列多项式:(1)a2b2;(2)x2y2;(3)m2n2;(4)b
2、2a2;(5)a64,能用平方差公式分解的因式有( )A2个B3个C4个D5个3、下列各式从左到右的变形是因式分解的是( )Aaxbxc(ab)xcB(ab)(ab)a2b2C(ab)2a22abb2Da25a6(a6)(a1)4、下列各式中,从左到右的变形是因式分解的是()A2a22a+12a(a1)+1B(x+y)(xy)x2y2Cx24xy+4y2(x2y)2Dx2+1x(x+)5、下列各式能用平方差公式进行分解因式的是( )Ax21Bx22x1Cx2x1Dx24x46、下列因式分解正确的是( )ABCD7、下列从左到右的变形,是分解因式的是()Axy2(x1)=x2y2xy2B2a2+
3、4a=2a(a+2)C(a+3)(a3)=a29Dx2+x5=(x2)(x+3)+18、将分解因式,正确的是( )ABCD9、若x2ax9(x3)2,则a的值为( )A3B6C3D610、下列分解因式结果正确的是( )Aa2b7abbb(a27a)B3x2y3xy6y3y(x2x2)C8xyz6x2y22xyz(43xy)D2a24ab6ac2a(a2b3c)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把多项式分解因式的结果是_2、实数范围内分解因式:x4+3x210_3、分解因式_4、分解因式_5、分解因式:3y212_三、解答题(5小题,每小题10分,共计50分
4、)1、因式分解:(1)(2)2、分解因式(1) (2)3、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程解:设x2+2x=y,原式 =y(y+2)+1 (第一步)=y2+2y+1 (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的( )A提取公因式 B平方差公式C两数和的完全平方公式 D两数差的完全平方公式(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后? (填“是”或“否”)如果否,直接写出最后的结果 (3)请你模仿以上方法尝试对多项式(x24x+3)(x24x+5)+1进行因
5、式分解4、因式分解:(1) (2)5、因式分解:(1); (2)-参考答案-一、单选题1、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案【详解】解:,故此选项不合题意;,故此选项符合题意;,故此选项不合题意;,故此选项不合题意;故选:【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键2、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2b2不能用平方差公式分解因式,故(1)不符合题意;x2y2能用平方差公式分解因式,故(2)符合题意;m2n2能用平方差公式分解因式,故(3)符合题意;b2a2不能用平方差公式分解
6、因式,故(4)不符合题意;a64能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.3、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故
7、是因式分解,故此选项符合题意;故选:D【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式4、C【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A从左到右的变形不属于因式分解,故本选项不符合题意;B从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C从左到右的变形属于因式分解,故本选项符合题意;D等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整
8、式积的形式5、A【解析】【分析】两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论【详解】A能变形为x212,符合平方差公式的特点,能用平方差公式分解因式;B多项式含有三项,不能用平方差公式分解因式;C多项式含有三项,不能用平方差公式分解因式;D多项式含有三项,不能用平方差公式分解因式故选:A【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键6、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项
9、正确;D、,故本选项错误故选:C【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底7、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意故选:B【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做
10、分解因式8、C【解析】【分析】直接利用提取公因式法进行分解因式即可【详解】解:;故选C【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键9、B【解析】【分析】由结合从而可得答案.【详解】解: 而 故选:B【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.10、D【解析】【分析】分别对四个选项进行因式分解,然后进行判断即可【详解】解:A、原式b(a27a-1),故不符合题意;B、原式3y(x2x2),故不符合题意;C、原式2xy(4z3xy),故不符合题意;D、原式2a(a2b3c),故符合题意故选D【点睛】本题主要考查了因式分解,解题的关键
11、在于能够熟练掌握提公因式法分解因式二、填空题1、【解析】【分析】先提取4m,再根据平方差公式即可因式分解【详解】=故答案为:【点睛】此题主要考查因式分解,解题的关键是熟知平方差公式的特点2、【解析】【分析】先用十字相乘分解,再用平方差公式分解即可【详解】解:x4+3x210= = 故答案为:【点睛】本题考查了实数范围内因式分解,解题关键是熟练运用因式分解的方法在实数范围内进行分解3、【解析】【分析】把原式化为,再利用完全平方公式分解因式即可.【详解】解: 故答案为:【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.4、【解析】【分析】原式提取m后,利用完全平方公式分解即可【
12、详解】解:故答案为:【点睛】本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键5、【解析】【分析】先提取公因式3,然后再根据平方差公式进行因式分解即可【详解】解:;故答案为【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键三、解答题1、(1);(2)【解析】【分析】(1)先提取公因式,再利用完全平方公式因式分解;(2)先利用平方差公式因式分解,再利用完全平方公式因式分解【详解】解:(1)原式=;(2)原式=【点睛】本题考查综合利用提公因式法和公式法因式分解,一般能提取公因式先提取公因式,再看能否用公式法因式分解注意:因式分解一定要彻底2、(1);(2)【解析】【分析
13、】(1)先提公因式,然后利用平方差公式因式分解即可;(2)利用提公因式法分解因式即可【详解】(1)解:原式;(2)解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等3、(1)C;(2)否,;(3)【解析】【分析】(1)根据题意可知,第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式,故选C;(2)观察第四步可知,
14、括号里面的还是一个完全平方公式还可以继续分解因式,分解分式的结果为:,故答案为:否,;(3)设 【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意4、(1);(2)【解析】【分析】(1)先提取y,再利用完全平方公式即可求解 (2)先提取,再利用平方差公式即可求解【详解】(1)原式;(2)原式【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法5、(1);(2)(5a+b)(a+5b)【解析】【分析】(1)提取公因式,再利用完全平方公式进行因式分解即可;(2)利用平方差公式进行因式分解即可【详解】解:(1)(2)【点睛】此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法