《2021-2022学年人教版九年级数学下册第二十七章-相似专项测试试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十七章-相似专项测试试卷(无超纲带解析).docx(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十七章-相似专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则为( )A1:2B2:1C2:3D1:32、如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长
2、线分别交AD于点E、F,连接BD、DP,BD与CF交于点H下列结论:CF2AE;DFPBPH;DP2PHPC;PE:BC(23):3正确的有()A1个B2个C3个D4个3、甲、乙两城市的实际距离为500km,在比例尺为1:10000000的地图上,则这两城市之间的图上距离为( )A0.5cmB5cmC50cmD500cm4、如图,在面积为144的正方形ABCD中放两个正方形BMON和正方形DEFG,重合的小正方形OPFQ的面积为4,若点A,O,G在同一直线上,则阴影部分面积为( )A36B40C44D485、如图的两个四边形相似,则a的度数是( )A120B87C75D606、下列图形中,不是
3、位似图形的是( )ABC D7、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB3m,BC7m,则建筑物CD的高是( )mA3.5B4C4.5D8、如图,矩形的对角线、相交于点E,轴于点B,所在直线交x轴于点F,点A、E同时在反比例函数的图象上,已知直线的解析式为,矩形的面积为120,则k的值是( )ABCD9、如图,正方形ABCD和正方形CGFE的顶点C、D、E在同一直线上,顶点B、C、G在同一条直线上O是EG的中点,EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH,以下四个结论:GHBE;EHMFHG;1;,其中正确的结论有(
4、)A1个B2个C3个D4个10、如图,在中,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )AB2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知 , 那么 的值为_2、如图,RtABC,ACB90,ACBC3,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD2,连接AF,BD,在正方形CDEF旋转过程中,BD+AD的最小值为_3、如图,在ABC中,AB6cm,AC9cm动点P从点A出发以2cm/s的速度向点B运动,动点Q从点C出发以1cm/s的速度向点A运动两点同时出发,其中一点到达终点时,另
5、一点也停止运动当运动时间t_s时,以A、P、Q为顶点的三角形与ABC相似4、一块材料形状是RtABC,C=90量得边AC=6cm,AB =10cm,用它来加工一个正方形零件,使正方形的至少一边在RtABC的边上,其余顶点在其它边上,则这个正方形零件的边长为:_5、如图,在矩形ABCD中,AB30,BC40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F若PDF为直角三角形,则PD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰直角中,过点作射线,为射线上一点,在边上(不与重合)且,与交于点(1)
6、求证:;(2)求证:;(3)如果,求证:2、如图,在正方形ABCD中,M为BC上一点,ME交CD于F,交AD的延长线于点E(1)求证:;(2)若,求的面积3、如图,中,为内部一点,且(1)求证:;(2)判断和数量关系,并说明理由4、阅读:两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:点P是线段AB上一点(APBP),若满足,则称点P是AB的黄金分割点黄金分割在我们的数学学习中也处处可见,比如我们把有一个内角为36的等腰三角形称为“黄金三角形”(1)理解:如图(1),请将内角分别36,36,108的等腰三角形分割成三个“黄金三角形”,并标出每个“黄金三角形”内角的度数;(2)运用:如图(
7、2),已知等腰三角形ABC为“黄金三角形”,AB=AC,A=36,BD为ABC的平分线求证:点D是AC的黄金分割点5、如图,在平面直角坐标系中,ABC的边AB在x轴上,且OBOA,以AB为直径的圆过点C,若点C的坐标为(0,4),且AB=10(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限内的动点(不与C,B重合),过点P作PDBC,垂足为点D,点P在运动的过程中,以P,D,C为顶点的三角形与COA相似时,求点P的坐标;(3)若ACB的平分线所在的直线l交x轴于点E,过点E任作一直线l分别交射线CA,CB(点C除外)于点M,N,则是否为定值?若是,求出该定值;若不是,请说明理由-参考答
8、案-一、单选题1、A【解析】【分析】可写成的形式,解得的值,即可得到的值【详解】解:可写成故选A【点睛】本题考察了比例,多项式与单项式的除法解题的关键在于将比例的符号作为除号或分号进行处理2、D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】解:BPC是等边三角形,BPPCBC,PBCPCBBPC60,在正方形ABCD中,ABBCCD,AADCBCD90,ABEDCF30,BE2AE,ADBC,FEPPBC,EFPPCB,EPFBPC,FEPEFPEPF60,EFP是等边三角形,BECF,CF2AE,故正确;PCCD,PCD30,PDC75,FDP15,DBA45,
9、PBD15,FDPPBD,DFPBPC60,DFPBPH,故正确;PDHPCD30,DPHDPC,DPHCPD,DP2PHPC,故正确;ABE30,A90,AEABBC,DCF30,DFDCBC,EFAE+DFBCBCBC,FE:BC(23):3,EFPE,PE:BC(23):3,故正确,综上,四个选项都正确,故选:D【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理3、B【解析】【分析】先将千米换单位为厘米,然后设这两城市之间的图上距离为,根据比例计算即可得【详解】解:,设这两城市之间的图上距离为,则:,解得:,故选:B【点睛】题目主
10、要考查比例的计算,理解题意,注意单位变换是解题关键4、D【解析】【分析】先求出AB=12,OQ=2,设正方形BMON的边长为x,则AN=12-x,NO=x,QG=12-x,然后证明ANOOQG,得到,即,求出x=8,由此即可求解【详解】解:正方形ABCD的面积为144,正方形OPFQ的面积为4,AB=12,OQ=2,设正方形BMON的边长为x,则AN=12-x,NO=x,QG=12-x,四边形BMON和四边形OPFQ都是正方形,ANO=BNO=OQF=OQG=POQ=90,ANOQ,NAO=QOG,ANOOQG,即,解得:或(舍去),BN=8,EF=12-x+2=6,阴影部分面积=144-82
11、-62+4=48,故选D【点睛】本题主要考查了正方形的性质,相似三角形的性质与判定,平行线的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件5、B【解析】【分析】根据相似多边形的性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:如图,两个四边形相似, ,两个四边形相似,且四边形的内角和等于360, 故选:B【点睛】本题主要考查了相似多边形的性质,多边形的内角和,熟练掌握相似多边形的对应边成比例,对应角相等是解题的关键6、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形【详解】解:根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;
12、D中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形故选D【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点7、D【解析】【分析】根据题意和图形,利用三角形相似的性质,可以计算出CD的长,从而可以解答本题【详解】解:EBAC,DCAC,EBDC,ABEACD,BE=1.5m,AB=3m,BC=7m,AC=AB+BC=10m,解得,DC=5,即建筑物CD的高是5m;故选:D【点睛】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答8、C【解析】【分析】过点作于点,
13、设与轴交于点,根据题意, ,求得,进而可得,即,设则,根据面积为120求得的值,点A、E同时在反比例函数的图象上,表示出,则,即 ,即可求得的值【详解】解:如图,过点作于点,设与轴交于点,直线的解析式为,令,令,设则在中,四边形是矩形,矩形的面积为120,即解得根据题意,点A、E同时在反比例函数的图象上,设,则,即 即可故选C【点睛】本题考查了反比例函数与几何图形,相似三角形的性质与判定,一次函数与坐标轴交点问题,矩形的性质,熟练运用以上知识是解题的关键9、C【解析】【分析】由四边形ABCD和四边形CGFE是正方形,得出BCEDCG,推出BEC+HDE=90,从而得GHBE;由GH是EGC的平
14、分线,得出BGHEGH,再由O是EG的中点,利用中位线定理,得HOBG且HO=BG;由EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出FHG=EHF=EGF=45,HEG=HFG,从而证得EHMFHG;设CG=a,则BG=GE=,BC=,即可得出,设正方形ECGF的边长是2b,则EG=,得到HO=,通过证得MHOMFE,得到,进而得到,进一步得到【详解】解:如图,四边形ABCD和四边形CGFE是正方形, BC=CD,CE=CG,BCE=DCG,在BCE和DCG中,BCEDCG(SAS),BEC=BGH,BGH+CDG=90,C
15、DG=HDE,BEC+HDE=90,GHBE故正确;EHG是直角三角形,O为EG的中点,OH=OG=OE,点H在正方形CGFE的外接圆上,EF=FG,FHG=EHF=EGF=45,HEG=HFG,EHMFHG,故正确;BGHEGH, BG=EG,设CG=a,则BG=GE=,BC=,;故正确;BGHEGH,EH=BH,HO是EBG的中位线,HO=BG,HO=EG,设正方形ECGF的边长是2b, EG=,HO=,OHBG,CGEF,OHEF,MHOMFE,EM=OM,EO=GO,SHOE=SHOG,故错误;正确的选项有,共3个;故选:C【点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相
16、似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键10、B【解析】【分析】由折叠的特点可知,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可【详解】解:沿折叠,使点落在点处,又,又为的中点,AE=AE,即,故选:B【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键二、填空题1、【解析】【分析】根据比例的性质求得,代入代数式求值即可【详解】解:故答案为:【点睛】本题考查了比例的性质,掌握比例的性质是解题的关键2、#【解析】【分析】在AC上截取一点M,使得CM=利用相似三角形的性质证明DM=AD,推出BD
17、+AD=BD+DM,推出当B,D,M共线时,BD+AD的值最小,即可解决问题;【详解】解:如图,在AC上截取一点M,使得CM=连接DM,BM CD=2,CM=,CA=3,CD2=CMCA,DCM=ACD,DCMACD,DM=AD,BD+AD=BD+DM,当B,D,M共线时,BD+AD的值最小,最小值=故答案为:【点睛】本题考查正方形的性质、相似三角形的判定和性质、两点之间线段最短、勾股定理等知识,解题的关键是学会由转化的思想思考问题3、【解析】【分析】分APQABC、AQPABC两种情况,列出比例式,计算即可【详解】解:由题意得:AP2tcm,CQtcm,则AQ(9t)cm,当t=62=30t
18、3PAQBAC,当时,APQABC,解得:t,当时,AQPABC,解得:t,3,故舍去综上所述:当t时,以A、P、Q为顶点的三角形与ABC相似,故答案为:【点睛】解此类题的关键是在运动中寻找相似图形,当运动的时间为t时,要用t来表示相关线段的长度,得出与变量有关的比例式,从而得到函数关系解题时注意数形结合,考虑全面,做好分类讨论4、或【解析】【分析】分正方形的边长在直角边上和斜边上两种情况讨论,根据相似三角形的性质与判定即可求得正方形的边长【详解】解:RtABC,C=90,AC=6cm,AB =10cm,如图,设正方形的边长为,则 四边形是正方形,即解得(2)如图,设正方形的边长为四边形是正方
19、形,在上即四边形是正方形,又又, 即即解得综上所述,正方形的边长为:或故答案为:或【点睛】本题考查了正方形的性质,勾股定理,相似三角形的性质与判定,分类讨论是解题的关键5、5或【解析】【分析】分情况进行讨论,当DPF=90时,过点O作OHAD于H,先证DHODAB,得到,求出,证明HOP=HPO=45,得到OH=PH=15,则PD=HD-PH=5;当PFD=90时,先求出,得到,从而得到DAO=ODA;证明OFEBAD,推出,则,最后证明PDFBDA,则【详解】解:如图1所示,当DPF=90时,过点O作OHAD于H,HPF=90,四边形ABCD是矩形,BD=2OD,BAD=OHD=90,AD=
20、BC=40,OHAB,DHODAB,由折叠的性质可得:,HOP=45,HOP=HPO=45,OH=PH=15,PD=HD-PH=5;如图2所示,当PFD=90时,OFE=90,四边形ABCD是矩形,BCD=90,CD=AB=30, ,DAO=ODA,由折叠的性质可知:AO=EO=25,PEO=DAO=ODA,又OFE=BAD=90,OFEBAD,PFD=BAD,PDF=BDA,PDFBDA,综上所述,当PDF为直角三角形,则PD的长为5或,故答案为:5或【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件三、解答题
21、1、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据题意先由等腰直角ABC得到BAC=B=45,从而结合DAE=45得到DAC=EAB,再由平行线的性质得到ACP=BAC=B=45,从而得到ADCAEB;(2)根据题意由相似三角形的性质得到AD:AE=AC:AB,转化为AD:AC=AE:AB,结合DAE=CAB=45得证结果;(3)根据题意结合ACD=45和ACB=90,由CD=CE得到CDE=CED=22.5,从而得到DAC=22.5,然后得到OCDDCA,最后即可求证【详解】解:(1)证明:是等腰直角三角形,BAC=B=45,DAE=45,PCAB,DAC=EAB,ACD
22、=BAC=B=45,ADCAEB;(2)证明:ADCAEBADAE=ACAB,即ADAC=AEAB,DAE=BAC=45,ADEACB;(3)ACD=45,ACB=90,CDE+CED=180-90-45=45,CDE=CED=22.5,ADEACB,ADE=ACB=90,CAD=180-ADE-CDE-ACD=180-90-22.5-45=22.5CAD=CDE,又OCD=DCA,OCDDCA,OCCD=CDCA,【点睛】本题考查相似三角形的判定与性质以及等腰直角三角形的性质,解题的关键是通过线段的比例关系得到三角形相似2、(1)见解析;(2)9【解析】【分析】(1)根据正方形的性质可得,根
23、据同角的余角相等可得,进而即可证明;(2)根据(1)的结论求得,进而求得,根据,证明,进而即可求得,根据三角形的面积公式即可求得的面积【详解】(1)证明:四边形是正方形(2)解:四边形是正方形, 【点睛】本题考查了正方形的性质,相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键3、(1)见解析;(2)PA=2PC,见解析【解析】【分析】(1)利用等腰三角形的性质、三角形内角和定理以及等式的性质判断出PBC=PAB,进而得出结论;(2)由(1)的结论得出PAPB=PBPC=ABBC,进而得出ABBC=2,即可得出结论【详解】(1)证明:ACB=90,AC=BC,ABC=45=PBA+
24、PBC,又APB=135,PAB+PBA=45,PBC=PAB,又APB=BPC=135,PABPBC(2)和数量关系是PA=2PC理由如下PABPBC,PAPB=PBPC=ABBC,在RtABC中,BC=AC,AB=2BC,PAPB=PBPC=2,PA=2PB,PB=2PC,PA=2PC【点睛】本题主要考查相似三角形的判定与性质,熟练三角形内角和定理,等腰三角形的性质等知识点是解题关键,综合性较强,有一定难度4、(1)见解析;(2)见解析【解析】【分析】(1)根据“黄金三角形”的定义进行分割即可;(2)证明CBDCAB,结合图形、根据黄金分割的定义判断即可【详解】解:(1)如图,(2)ABC
25、=C=72又BD平分ABCABD=CBD=ABC=36BDC=180CCBD72ADBD,BCBD即ADBCBD又CC,CBDACBDCABCDBC=BCACCDAD=ADAC即D点是AC的黄金分割点【点睛】本题考查的是黄金分割的概念和性质,掌握把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割是解题的关键5、(1)y=-14x2+32x+4;(2)(6,4)或(3,254);(3)是,CM+CNCMCN=3520【解析】【分析】(1)根据题意,先证明AOCCOB,得到AOCO=OCOB,求出点A、B的坐标,然后利用待定系数法,即可求出抛物线解
26、析式;(2)根据题意,可分为两种情况:AOCPDC或AOCCDP,结合解一元二次方程,相似三角形的判定和性质,分别求出点P的坐标,即可得到答案;(3)过点E作EIAC于I,EJCN于J,然后由角平分线的性质定理,得到EI=EJ,再证明MEIMNC,NEJNMC,得到1NC+1MC=1EI,然后求出EI一个定值,即可进行判断【详解】解:(1)以AB为直径的圆过点C,ACB=90,点C的坐标为0,4,COAB,AOC=COB=90,ACO+OCB=ACO+OAC=90,OCB=OAC,AOCCOB,AOCO=OCOB,CO=4,AO+BO=AB=10,AO=10-OB,10-OB4=4OB,解得:
27、OB=2或OB=8,经检验,满足题意,OBOA,OB=8,点A为(,0),点B为(8,0)设抛物线的解析式为y=ax2+bx+c,把点A、B、C三点的坐标代入,有c=44a-2b+c=064a+8b+c=0,解得:a=-14b=32c=4,抛物线的解析式为y=-14x2+32x+4;(2)根据题意,如图:当AOCPDC时,ACO=PCD,ACO+OCB=90,PCD+OCB=90,PCOC,点P的纵坐标为4,当y=4时,有-14x2+32x+4=4,解得:x1=6或x2=0(舍去);P(6,4);当AOCCDP时,过点D作DMx轴交y轴于点M,过点P作PFy轴交BC于点F,MD、PF交于点N,
28、则PNDDMCPDCCOA,CPD=FPD,DNPN=CMDM=AOCO=24=12,PDC=90,CPF是等腰三角形,CD=FD,CMD=FND=90,CDM=FDN,CMDFND(AAS),MD=DN,PN=4CM,设直线BC解析式为,把B(8,0),C(0,4)代入解得直线BC解析式为y=-12x+4,设D(t,-12t+4),则P(2t,-t2+3t+4),CM=4-(-12t+4)=12t,PN=(-t2+3t+4)-(-12t+4)=-t2+72t,-t2+72t=2t,解得:t=32或t=0(舍),2t=3,-t2+3t+4=254,P(3,254),综合上述,点P的坐标为:(6
29、,4)或(3,254);(3)过点E作EIAC于I,EJCN于J,如图:CE是ACB的角平分线,EI=EJ,EICN,EJCM,MEIMNC,NEJNMC,EINC=MEMN,EJMC=NEMN,EINC+EJMC=MEMN+NEMN=1,EINC+EIMC=1,1NC+1MC=1EI,ACOAEI,AIEI=AOCO=12,AC=22+42=25,AC=AI+IC=AI+EI,25-EIEI=12,解得:EI=453,经检验,符合题意,1NC+1MC=1EI=3520;1NC+1MC是一个定值【点睛】本题考查了二次函数的综合应用,求二次函数的解析式,二次函数的性质,相似三角形的判定和性质,解一元二次方程,角平分线的性质定理等知识,解题的关键是熟练掌握题意,正确的作出辅助线,运用数形结合的思想进行解题