《2021-2022学年人教版九年级数学下册第二十七章-相似综合测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十七章-相似综合测试练习题(无超纲).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十七章-相似综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知点M是ABC的重心,AB18,MNAB,则MN的值是()A9BCD62、如图,与位似,点为位似中心已知
2、,则与的面积比为( )ABCD3、下列图形一定是相似图形的是()A两个矩形B两个等腰三角形C两个直角三角形D两个正方形4、若2a3b,则的值为()ABCD5、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC相似的是( )ABCD6、下列各线段的长度成比例的是( )A2、5、6、8B1、2、3、4C3、6、7、9D3、6、9、187、如图,在平面直角坐标中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数y(k0)的图象过点A并交AD于点G,连接DF若BE:AE1:2,AG:GD3:2,且FCD的面积为,则k的值是()AB3CD58、如图,D、E分别是
3、ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA1:25,则的值为( )ABCD9、在小孔成像问题中,如图所示,若点O到的距离是,点O到的距离是,则像的长与物体长的比是( )ABCD10、如图,分别交于点G,H,则下列结论中错误的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,RtABC中,C90,点D在AC上,DBCA,若AC4,AB5,则BD的长度为 _2、如图,已知O是坐标原点,点A、B分别在x轴,y轴上,OA=1,OB=2,若点D在x轴下方,且使得AOB和OAD相似(不包括全等),则点D的坐标为_3、如图,
4、在RtABC中,C90,ADBD,CE2BE,过点B作BFCD交AE的延长线于点F,当BF1时,AB的长为 _4、已知线段AB4cm,C是AB的黄金分割点,且ACBC,则AC_5、如图,ABCACD,若AD5,BD4,则ACD与ABC的相似比为_三、解答题(5小题,每小题10分,共计50分)1、尝试:如图,中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,直接写出图中的一对相似三角形_;拓展:如图,在中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,若,求的长;应用:如图,在中,将绕点A按逆时针方向旋转一周,在旋转过程中,当点B的对应点恰好落
5、在的边所在的直线上时,直接写出此时点C的运动路径长2、如图是由小正方形构成的66网格,每个小正方形的顶点叫格点,圆O经过A、B两个格点,以及格线上的点C,仅用无刻度直尺在给定的网格中按要求画图(画图过程用虚线表示,画图结果用实线表示)(1)作劣弧BC的中点M;(2)在优弧BC上找一点D,使得ADBC;(3)在优弧AC上找一点E,使得3、如图,四边形中,平分,为的中点(1)求证:;(2)求证:;(3)若,求的值4、如图,一次函数的图象与轴交于点,与轴交于点,与反比例函数的图象交于B,D两点,且AC=BC(1)求反比例函数的解析式;(2)已知是轴正半轴上一点,作轴交直线于点,交双曲线于点,当,为顶
6、点的四边形为平行四边形时,请写出点的坐标5、如图, 线段是的角平分线, 点点 分别在线段 的延长线上, 联结, 且 (1)求证: ;(2)如果 , 求证: -参考答案-一、单选题1、D【解析】【分析】根据重心的概念得到,证明CMNCDB,根据相似三角形的性质列式计算,得到答案【详解】点M是ABC的重心,AB18,AD=DB=AB=9,MN/AB,CMNCDB,即解得:MN=6,故选:D【点睛】本题考查的是三角形的重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键2、D【解析】【分析】根据相似比等于位似比,面
7、积比等于相似比的平方即可求解【详解】解:与位似,点为位似中心已知,与的相似比为与的面积比为故选D【点睛】本题考查了位似图形的性质,相似三角形的性质,掌握位似比等于相似比是解题的关键3、D【解析】【分析】根据相似图形的定义,结合选项,用排除法求解【详解】解:A、两个矩形,对应角相等,对应边不一定成比例,故不符合题意;B、两个等腰三角形顶角不一定相等,故不符合题意C、两个直角三角形,只有一个直角相同,锐角不一定相等,故不符合题意;D、两个正方形,符合角分别对应相等,边分别对应成比例,符合相似性定义,故符合题意;故选:D【点睛】本题考查的是相似图形的概念,掌握“角分别对应相等,边分别对应成比例的两个
8、多边形相似”是解本题的关键.4、D【解析】【分析】等式两边都除以即可【详解】解:两边都除以得,故选:D【点睛】本题考查了比例的性质,解题的关键是主要利用了两内项之积等于两外项之积的性质5、B【解析】【分析】根据正方形的性质求出,根据相似三角形的判定定理判断即可【详解】解:由正方形的性质可知,、图形中的钝角都不等于,由勾股定理得,对应的图形中的边长分别为1和,图中的三角形(阴影部分)与相似,故选:B【点睛】本题考查的是相似三角形的判定,解题的关键是掌握两组对应边的比相等且夹角对应相等的两个三角形相似6、D【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,据此进
9、行判断即可【详解】解:A、2856,故本选项错误;B、1423,故本选项错误;C、3967,故本选项错误;D、318=69,故本选项正确故选:D【点睛】考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等7、B【解析】【分析】过点A作AMx轴于点M,GNx轴于点N,设点 ,则AM=b,OM=a,可得DGNDAM, ,再由BE:AE1:2,AG:GD3:2,可得到, ,从而得到 ,进而得到 ,继而,再由平行四边形的性质,可得BOFDNG,从而得到 ,再由,即可求解【详解】解:如图,过点A作AMx轴于点M,GNx轴于点N,设点 ,则AM=b,
10、OM=a,AMNG,AMy轴,DGNDAM, , ,BE:AE1:2,AG:GD3:2, , , , ,点A、G在反比例函数y(k0)的图象上, , , , , ,四边形ABCD是平行四边形,OBF=GDN,BOF=GND=90,BOFDNG, ,即, , , ,解得: , 故选:B【点睛】本题主要考查了相似三角形的性质和判定,反比例函数的几何意义,平行四边形的性质,熟练掌握相关知识点是解题的关键8、B【解析】【分析】根据可得,再根据相似三角形的性质可得和与的相似比为1:5,进而可得,最后用BC表示EC即可求出【详解】解:,与的相似比为1:5故选:B【点睛】本题考查相似三角形的判定定理和性质,
11、综合应用这些知识点是解题关键9、B【解析】【分析】由题意可知与是相似三角形,相似比为1:3,故CD:AB=1:3【详解】由小孔成像的定义与原理可知与高的比为6:18=1:3与相似比为1:3CD:AB=1:3故选:B【点睛】本题考查了相似三角形的性质,用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会形成物的倒像,我们把这样的现象叫小孔成像相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比10、D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可【详解】解:ABCD,A选项正确,不符合题目要求;AEDF,CGE=C
12、HD,CEG=D,CEGCDH,ABCD,B选项正确,不符合题目要求; ABCD,AEDF,四边形AEDF是平行四边形,AF=DE,AEDF,; C选项正确,不符合题目要求;AEDF,BFHBAG,ABFA,D选项不正确,符合题目要求 故选D【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键二、填空题1、【解析】【分析】先利用勾股定理求出BC=3,然后证明ABCBDC,得到,即,由此求解即可【详解】解:在RtABC中,由勾股定理得, ,DBCA,CC,ABCBDC,即,故答案为:【点睛】本题主要考查了勾股定理和相似三角形的性质与判定,解题
13、的关键在于能够熟练掌握相似三角形的性质与判定条件2、(0,-)或(1,-)或(,)或(,)【解析】【分析】点D在y轴上,根据AOBDOA,可得,即;当点D在过点A平行y轴的直线上,根据AOBD1AO,即;当点D2在AD上,作D2Ex轴于E,OD2AD于D2,在RtAOB中,AB=,根据OD2AAOB,即,可证D2EADOA,即,求出AE=,D2E=,当点D3在0D1上,作D3Fx轴于F,AD3OD1于D3,根据OD3ABOA,即,可证D3FOD1AO,即,求出OE=,D3F=即可【详解】解:点D在y轴上,AOBDOA,即,解得OD=,点D(0,-);当点D在过点A平行y轴的直线上,AOBD1A
14、O,即,解得D1A=,点D1(1,-);当点D2在AD上,作D2Ex轴于E,OD2AD于D2,在RtAOB中,AB=,OD2AAOB,即,在RtOAD中,AD=,D2Ex轴于E,ODx轴,D2EOD,AD2E=ADO,D2EA=DOA=90,D2EADOA,即,AE=,D2E=,OE=OA-AE=1-=,D2(,)当点D3在OD1上,作D3Fx轴于F,AD3OD1于D3,OD3ABOA,即,在RtOAD1中,0D1=,D3Fx轴于F,ODx轴,D3FOD,OD3F=QD1A,D3FO=D1AO=90,D3FOD1AO,即,OE=,D3F=,D3(,);AOB和OAD相似(不包括全等),则点D的
15、坐标为(0,-)或(1,-)或(,)或(,)故答案为(0,-)或(1,-)或(,)或(,)【点睛】本题考查三角形相似的判定与性质,勾股定理,掌握三角形相似判定与性质是解题关键3、5【解析】【分析】证明,可得,可求得,由平行线分线段成比例可求OD的长,再根据直角三角形斜边上的中线求出CD,即可求解【详解】解:如图,CD交AF于点O,且且故答案为:5【点睛】本题考查相似三角形的判定与性质、直角三角形的性质等知识,是重要考点,掌握相关知识是解题关机键4、#【解析】【分析】根据黄金分割点的定义,知AC是较长线段;所以ACAB,代入数据即可得出AC的长度【详解】解:由于C为线段AB4的黄金分割点,且AC
16、BC,则ACAB422故答案为:2-2【点睛】本题考查了黄金分割问题,理解黄金分割点的概念要求熟记黄金比的值5、【解析】【分析】根据ABCACD,可以得到,即AC2=ABAD,由此可得出AC的长【详解】解:ABCACD,AD=5,BD=4,即AC2=ABAD,故答案为:【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应边的比等于相似比是解答此题的关键三、解答题1、尝试:;拓展:;应用:点的运动路径长为或或或或【解析】【分析】尝试:根据是由ABC旋转得到的,可得到,即可推出,则;拓展:由AC=BC,ACB=90,可得,同(1)可证,得到,由此求解即可;应用:分点在延长线上时,点在的延长线上
17、时,当点落在边所在直线上时,当点落在边所在直线上时,当点与点重合时,点旋转一周时,五种情况讨论求解即可得到答案【详解】解:尝试:,理由如下:是由ABC旋转得到的,即,;故答案为:;拓展:AC=BC,ACB=90,同(1)原理可证,;应用:在中,当点落在所在直线上时,有两种情况:若点在延长线上时,如图所示:由旋转的旋转可得:,点C运动的路径即为,;若点在的延长线上时,如图所示,此时点,三点共线,点C运动的路径即为,由旋转的性质可得,旋转角,弧;当点落在边所在直线上时,如图所示,点C运动的路径即为,由旋转的性质可得,弧;当点落在边所在直线上时,如图所示,此时点,三点共线,旋转角为,弧当点与点重合时
18、,点旋转一周,弧当点的对应点恰好落在的边所在直线上时,点的运动路径长为或或或或【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式2、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)如图,格点中找到点G,H,BCH中,BG:GH=1:1,则BCH的中位线在所在直线上,则点为的中点,进而根据垂径定理的推论,连接OF并延长交于点,即可求得劣弧BC的中点;(2)连接交OM于点,连接并延长交于点,连接,根据对称性即可证明ADOM,结合(1)即可证明AD/BC则点即为所求;(3)连接,结合(1)(2)
19、先求得的垂直平分线,交于点Q,连接CQ并延长交于点,则AE=AB,点即为所求【详解】(1)如图所示,BGF=BHC,FBG=CBHBFGBCHBFBC=BGBHBFFC=1即为的中点,连接OF并延长交于点,即为所求劣弧BC的中点;(2)连接交OM于点,连接并延长交于点,连接,则点即为所求;(3)连接,作的垂直平分线,交于点Q,连接CQ并延长交于点,则AE=AB,点即为所求【点睛】本题考查了无刻度直尺圆内作图,相似三角形的性质,垂径定理,等边对等角,平行线的性质,弦与弧的关系,熟练掌握以上知识是解题的关键3、(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)先根据相似三角形的判定证
20、出,再根据相似三角形的性质即可得证;(2)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据平行线的判定即可得证;(3)先根据相似三角形的判定证出,再根据相似三角形的性质可得,由此即可得出答案【详解】证明:(1)平分,在和中,;(2),为的中点,由(1)已得:,;(3),为的中点,由(2)已证:,即,【点睛】本题考查了相似三角形的判定与性质、平行线的判定等知识点,熟练掌握相似三角形的判定与性质是解题关键4、(1)反比例函数的解析式为y=;(2)P点坐标为(2,0)或(-2+2,0)【解析】【分析】(1)首先求出一次函数与坐标轴的交点,进而利用相似三角
21、形的判定与性质得出B点坐标,进而求出反比例函数解析式;(2)利用平行四边形的性质,进而表示出MN的长,再解方程得出a的值,即可得出P点坐标【详解】解:(1)如图1,过点B作BEx轴于点E,一次函数y=x+1的图象与x轴交于点A,与y轴交于点C,当x=0时,y=1;当y=0时,x=-2,故A(-2,0),C(0,1),COx轴于点O,BEx轴于点E,COBE,AOCAEB,AC=BC,AO=OE=2,即B点横坐标为:2,则y=2+1=2,B(2,2),把B点代入y=(k0),解得:xy=4,反比例函数的解析式为y=;(2)如图,由题意可得:COMN,只有CO=MN时,O,C,M,N为顶点的四边形
22、为平行四边形,点P在x轴正半轴上,分两种情况:当P点在B点右侧时,设P(a,0),(a0)则N(a,),M(a,a+1),故MN=a+1-=CO=1,解得:a=2,经检验,a=2是分式方程的解,但a=-20舍去;当P点在B点左侧时,设P(a,0),则N(a,),M(a,a+1),故MN=-(a+1)=CO=1,解得:a=-2+2或a=-2-2,经检验,a=-2+2或a=-2-2都是分式方程的解,但a= -2-20舍去;综上所述,P点坐标为(2,0)或(-2+2,0)【点睛】本题是反比例函数的综合题,主要考查了反比例函数性质、相似三角形的判定与性质以及分式方程和解一元二次方程,正确表示MN的长是
23、解题关键5、(1)见解析;(2)见解析【解析】【分析】(1)根据可得ABBC=BEBD,根据线段是的角平分线,可得ABE=CBD,即可证明ABECBD,进而可得AEB=CDB,根据对顶角相等可得ADE=CDB,等量代换可得ADE=AED,根据等边对等角即可证明(2)由,可得FDB=FBD,证明FBCFAB,可得AFCF=FB2根据DF=AF-AD,DC=DF-FC,代入进行变形即可证明【详解】证明:(1)ABBC=BEBD线段是的角平分线,ABE=CBDABECBDAEB=CDBADE=CDBADE=AED(2)FDB=FBD设DBA=DBC=,DAB=则BDF=+=FBDCBF=FBD-DBC=+-=BAD即CBF=BAF又F=FFBCFABFBFA=FCFB即AFCF=FB2又DF2=ACAFDF=AF-AD, AF-ADDF=AFCF即AFDF-ADDF=AFCFAFDF-AFCF=ADDF即AFDF-CF=ADDFAFCD=ADDF又AFCD=AEDF【点睛】本题考查了相似三角形的性质与判定,对于第二问恒等式的证明,不能直接找到对应的相似三角形,解题的关键是要理清各相等线段之间的关系