《2022年最新人教版九年级数学下册第二十七章-相似专项测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十七章-相似专项测试试题(无超纲).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十七章-相似专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()
2、ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个2、如图,已知矩形ABCD中,AB3,BE2,EFBC若四边形EFDC与四边形BEFA相似而不全等,则CE的值为( )AB6CD93、已知点C是线段AB的黄金分割点,且ACBC,若AB2,则BC的值为( )A3B1C1D24、如图,在ABC中,点D在边AB上,若ACDB,AD3,BD4,则AC的长为( )A2BC5D25、已知:矩形OABC矩形OABC,B(10,5),AA1,则CC的长是()A1B2C3D46、如图,直线abc,直线m分别交直线a,b,c于
3、点A,B,C,直线n分别交直线a,b,c于点D,E,F若,则的值为()ABC2D37、如图,ABCDEF,若,BD9,则DF的长为()A2B4C6D88、如图,点是正方形的边边上的黄金分割点,且,表示为边长的正方形面积,表示以为长,为宽的矩形面积,表示正方形除去和剩余的面积,:的值为( )ABCD9、如图,分别交于点G,H,则下列结论中错误的是( )ABCD10、如图,P是直角ABC斜边AB上任意一点(A,B两点除外),过点P作一条直线,使截得的三角形与ABC相似,这样的直线可以作()A4条B3条C2条D1条第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知四边
4、形内接于,半径,对角线AC、BD交于E点,且,则_2、如图,在平面直角坐标系中,点P,A的坐标分别为(1,0),(2,4),点B是y轴上一动点,过点A作ACAB交x轴于点C,点M为线段BC的中点,则PM的最小值为 _3、如图,在RtABC中,C90正方形EFCD的三个顶点E,F,D分别在边AB,BC,AC上已知AC15,BC5,则正方形的边长为_ 4、如果四边形ABCD的四条边长分别为54cm、48cm、45cm、63cm,另一个和它相似的四边形的最长边长为21cm,那么这个四边形的最短边的长度为_5、如图,则_三、解答题(5小题,每小题10分,共计50分)1、在如图所示的平面直角系中,已知,
5、(方格中每个小正方形的边长均为1个单位)(1)画出;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形,并写出点的坐标 2、如图,过原点的直线y2x交反比例函数y1于B点,交反比例函数y2于C点,且OBBC,A点横坐标为4且为y1上一点,过B点作BDx轴,垂足为点D(1)求反比例函数y2与直线AD的解析式(2)是否反比例函数y2图象在第一象限内存在一点P,使得SABPS四边形ADBP,若存在,求出P点坐标;若不存在,请说明理由(3)若动点Q在图象y2上,在平面内是否存在点H,使得A、B、Q、H四点能组成以AB为边的矩形?若存在,请直接写出H点的坐标;若不存在,请说明理由3
6、、已知,在平面直角坐标系中,点O为坐标原点,A点坐标为,B点坐标为,且满足(1)如图1,求、的长;(2)如图2,P是y轴负半轴上一点,点C在第二象限,连接、,且,设,请用含t的式子表示的面积;(3)如图3,在(2)的条件下,作轴交的延长线于点D,与y轴交于点E,若E是的中点,求t值4、已知:如图,在平面直角坐标系中,点A,B分别在x,y轴上,且OA,OB的长(OAOB)是一元二次方程x27x120的两根(1)求点A,B的坐标及线段AB的长;(2)过点B作BCAB,交x轴于点C,求点C的坐标;(3)在(2)的条件下,如果P,Q分别是线段AB和AC上的动点,连接PQ,设APCQx,问是否存在这样的
7、x,使得APQ与ABC相似?若存在,请直接写出x的值;若不存在,请说明理由5、小豪为了测量某塔高度,把镜子放在离塔(AB)50m的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到塔尖A,再测得DE2.4m,小豪目高CD1.68m,求塔的高度AB-参考答案-一、单选题1、C【解析】【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21
8、,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质,熟练掌握位似图形的性质是解决问题的关键2、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可【详解】解:设CE=x,四边形EFDC与四边形BEFA相似,AB=3,BE=2,EF=AB,解得:x=4.5,故选:A【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC与四边形BEFA相似得到比例式3、A【解析】【分析】根据黄金分割点的定义,知是较长线段;则,代入数据即可得出的长度即可【详解】解:由于点C为线段的黄金分割点,且是较长线段;
9、则,BC=AB-AC=2-()=3-故选:A【点睛】本题考查了黄金分割点的概念,解题的关键是熟记黄金比的值进行计算4、B【解析】【分析】求出AB,通过AA证ACDABC,推出,代入求出即可【详解】解:AD3,BD4,AB7,AA,ACDB,ACDABC,AC2ADAB21,AC,故选:B【点睛】本题考查了相似三角形的性质和判定的应用,关键是推出ACDABC并进一步得出比例式5、B【解析】【分析】根据坐标与图形性质求出OA=5,进而得出矩形OABC与矩形OABC的相似比为4:5,计算即可【详解】解:点B的坐标为(10,5),AA=1,OA=5,OA=4,矩形OABC与矩形OABC的相似比为4:5
10、,OC:OC=4:5,OC=8,CC=10-8=2,故选:B【点睛】本题考查了坐标与图形性质,正确求出矩形OABC与矩形OABC的相似比是解题的关键6、A【解析】【分析】先由得出,再根据平行线分线段成比例定理即可得到结论【详解】解:,故选:A【点睛】本题考查了平行线分线段成比例定理,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例7、C【解析】【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可【详解】解:ABCDEF, ,解得:DF6,故选:C【点睛】本题主要是考查了平行线分线段成比例,利用平行条件,找到线段比例式,代入对应边长求解,这是解决本题的主要思路8、C【解
11、析】【分析】设正方形ABCD的边长为a,关键黄金分割点的性质得到和,用a表示出、和的面积,再求比例【详解】解:设正方形ABCD的边长为a,点E是AB上的黄金分割点,故选C【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质9、D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可【详解】解:ABCD,A选项正确,不符合题目要求;AEDF,CGE=CHD,CEG=D,CEGCDH,ABCD,B选项正确,不符合题目要求; ABCD,AEDF,四边形AEDF是平行四边形,AF=DE,AEDF,; C选项正确,不符合题目要求;AEDF,BFHBAG,ABFA,D选项
12、不正确,符合题目要求 故选D【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键10、B【解析】【分析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案【详解】解:如图,过点P可作PEBC或PEAC,APEABC、PBEABC;过点P还可作PEAB,可得:EPAC90,AAAPEACB;满足这样条件的直线的作法共有3种故选:B【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理从是解题的关键二、填空题1、【解析】【分析】连接BO并延长交AD于点F,连接OD,然后根据三角形的相似可以求得CD的长
13、,然后根据勾股定理可以求得AD的长【详解】解:连接BO交AD于点F,连接OD,BABD,OAOD,BF是线段AD的垂直平分线,BFAD,AC是O的直径,ADC90,即ADDC,BFCD,BOEDCE,AO6,EC2,OB6,OC6,OE4,解得,CD3,在RtADC中,ADC90,AC12,CD3,AD,故答案为:【点睛】本题考查相似三角形的判定与性质,圆内接四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理解答2、【解析】【分析】连接,根据直角三角形斜边中线等于斜边一半可得:,则点在线段的垂直平分线上,作线段的垂直平分线交轴,轴于点,则当时,最小,再利用相似
14、三角形的判定和性质,结合勾股定理解答即可【详解】如图:过点作于点,连接,为中点,点在线段的垂直平分线上作线段的垂直平分线交轴,轴于点,当,最小连接,则(,4),设,则,即,(,)在中当时, 最小故答案为:【点睛】本题考查了线段垂直平分线的判定和性质,直角三角形的性质,相似三角形的判定和性质,点到直线的距离,勾股定理等知识,能够综合熟练运用这些性质和判定是解题关键3、#【解析】【分析】根据正方形的性质和相似三角形的判定方法可知,可得到关于正方形边长的比例式,代入数值计算即可【详解】解:,四边形是正方形,AED=B,ADE=C=90,若设正方形的边长为,ED=CD=x,又AC15,BC5,AD=A
15、C-CD=15-x,解得:,则正方形的边长为故答案为【点睛】本题考查了正方形的性质、相似三角形的判定和性质,解一元一次方程,解题的关键是注意图形中的相等线段的替换4、15cm【解析】【分析】根据相似多边形的性质求解即可【详解】解:四边形ABCD与另一个四边形相似,设另一个四边形的最短边的长度为x,解得:这个四边形的最短边的长度为15cm故答案为:15cm【点睛】此题考查了相似多边形的性质,解题的关键是熟练掌握相似多边形的性质相似多边形的对应边成比例,对应角相等5、【解析】【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可【详解】解:/,解得:,故答案为:【点睛】本题考查的是平
16、行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键三、解答题1、(1)见解析;(2)(6,6)【解析】【分析】(1)在坐标系中先描点,然后依次连接即可得;(2)根据题意中位似中心及相似比先确定点的坐标,然后依次连接即可得【详解】解:(1)在坐标系中先描点,然后依次连接,如图所示:即为所求;(2)A-3,-3,B-1,-3,C-1,-1,根据位似中心及相似比可得:A16,6,B12,6,C12,2,然后依次连接即可得,A1B1C1即为所求;故答案为:6,6【点睛】题目主要考查位似图形作法及确定点的坐标,熟练掌握位似图形的作法是解题关键2、(1),直线AD的解析式为;(2);(3)存在点
17、H(),使得A、B、Q、H四点能组成以AB为边的矩形【解析】【分析】(1)联立方程组求解得出点B坐标,过点C作CEx轴,证明,由相似三角形的性质得出点C坐标,代入y2,求出k的值,即可得出函数y2的解析式;再求出点A坐标,运用待定系数法求出直线AD的解析式即可;(2)过点P作PRx轴交AB于点F,已知A、B、D三点坐标,求出ABD的面积,设点P的坐标,表示出线段PF,利用SABP=S四边形ADBP =SABD,求出PF,再求出点P的坐标;(3)分情况讨论,以BQ为边时,BQAB;以AQ为对角线时,ADAB,再结合矩形的中心对称性,求出点H【详解】解:(1)联立方程组得,解得,BDx轴, 当x=
18、4时, 过点C作CEx轴于点E,BD/CEOB=BC,BD=2CE=4,OE=2 代入得, 设直线AD的解析式为 把(1,0),(4,)代入得 解得, 直线AD的解析式为 (2) ,设直线AB的解析式为把代入得,解得,直线AB的解析式为过P作PRx轴,交AB于点F,SABPS四边形ADBP,设整理,得:解得,经检验,是原方程的根(3)设以BQ为边时,则即整理得,解得,经检验,均为原方程的根,以AQ为边,则整理得,解得,经检验是原方程的解,综上,存在点H(),使得A、B、Q、H四点能组成以AB为边的矩形【点睛】本题考查了反比例函数的解析式求解,中心对称性,三角形的面积和矩形的判定与性质第一问的关
19、键是求出点B、C的坐标,第二问的关键是找到ABC和ABD的面积之间的关系,第三问的关键是利用矩形的中心对称性和矩形的内角是直角列出方程组3、(1)OA=6,OB=6;(2)SAPC=12t2+3t;(3)t=2【解析】【分析】(1)根据平方和二次根式的非负性计算即可;(2)过点C作CFy轴,证明BOPPFC,即可得解;(3)过点C作CFy轴,由全等可得CF=PO=t,证明CEFBEO,得到EFOE=CFOB,即可得解;【详解】(1),a-62+b-6=0,a-6=0,b-6=0,a=6,b=6,OA=6,OB=6;(2)过点C作CFy轴,BPO+CPF=90,OBP+BPO=90,CPF=OB
20、P,在BOP和PFC中,BP=PCBOP=PFC=90OBP=CPF,BOPPFC,CF=PO=t,AP=AO+OP=6+t,SAPC=12CFAP=12t6+t=12t2+3t;(3)过点C作CFy轴,由(2)可知BOPPFC,CF=PO=t,FP=OB=6,ADBO,E是BD的中点,D=EBO,DE=BE,在和OBE中,D=EBODE=BEAED=OEB,ADEOBE,AE=EO=3,EF=PF-OP-OE=3-t,CFBO,CEFBEO,EFOE=CFOB,即3-t3=t6,t=2【点睛】本题主要考查了位置与坐标,完全平方公式,全等三角形的判定与性质,相似三角形的判定与性质,二次根式有意
21、义的条件,准确利用平行线的性质证明三角形全等求解是解题的关键4、(1)A(-4,0);B(0,3);AB=5;(2);(3)存在,或【解析】【分析】(1)解一元二次方程即可得OA、OB的长,再根据点A、B在坐标轴上的位置即可求得A、B两点的坐标,由勾股定理即可求得线段AB的长;(2)利用相似三角形的判定与性质可求得OC的长,从而可求得点C的坐标;(3)分两种情况考虑:APQABC;APQACB,然后由相似三角形的性质即可求得x的值【详解】(1)解x27x120得:,OAOB OA=4,OB=3点A在x轴负半轴上,点B在y轴正半轴上A(-4,0),B(0,3)由勾股定理得(2)BCAB,OBAC
22、BOA=COB=ABC=90ABO+BAO=ABO+CBOBAO=CBOABOBCO即点C在x轴正半轴上(3)存在,若APQABC则有,即APAC=ABAQ解得:若APQACB,即APAB=ACAQ解得:综上所述,满足条件的x的值为或【点睛】本题考查了解一元二次方程,相似三角形的判定与性质,勾股定理等知识,运用了分类讨论思想,关键是相似三角形的判定与性质的运用,注意分类讨论5、35m【解析】【分析】根据题意得:ABE=CDE=90,BE=50m BE=50m,由光的反射定律得:AEB=CED,从而得到ABECDE,再由相似三角形的性质,即可求解【详解】解:根据题意得:ABE=CDE=90, BE=50m,由光的反射定律得:AEB=CED,ABECDE,ABCD=BEDE ,AB1.68=502.4 ,解得:AB=35m ,即塔的高度为35m 【点睛】本题主要考查了相似三角形的实际应用,明确题意,准确得到相似三角形是解题的关键