《函数的极值与导数》PPT课件(1).ppt

上传人:豆**** 文档编号:27084547 上传时间:2022-07-22 格式:PPT 页数:13 大小:588.50KB
返回 下载 相关 举报
《函数的极值与导数》PPT课件(1).ppt_第1页
第1页 / 共13页
《函数的极值与导数》PPT课件(1).ppt_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《《函数的极值与导数》PPT课件(1).ppt》由会员分享,可在线阅读,更多相关《《函数的极值与导数》PPT课件(1).ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、a b( , )在在某某个个区区间间内内, ,fx ( )0f xa b( )( , )在在内内单单调调递递增增fx ( )0f xa b( )( , )在在内内单单调调递递减减 ( )0fx ( )( , )f xa b在在内内是是常常函函数数. .复习:复习:函数单调性与导数正负的关系函数单调性与导数正负的关系yxaob yf x (3 3)在点)在点 附近附近, , 的导数的符号有什么规律的导数的符号有什么规律? ?,a b yf x (1)函数)函数 在点在点 的函数值与这些点附近的的函数值与这些点附近的 函数值有什么关系函数值有什么关系? yf x,a b(2 2)函数)函数 在点在

2、点 的导数值是多少的导数值是多少? ? yf x,a b(图一图一)问题:问题:0)( xf0)( xf0)( xf0)( af0)( bfxy yf xohgfedc(图二图二)yxaob yf x(图一图一)0)( xf0)( xf0)( xf0)( af0)( bfxy yf xohgfedc(图二图二)极大值极大值f(b)点点a a叫做函数叫做函数y=f(x)的的极小值点极小值点,f(a a)叫做函数叫做函数y=f(x)的的极小值极小值.点点b叫做函数叫做函数y=f(x)的的极大值点极大值点,f(b)叫做函数叫做函数y=f(x)的的极大值极大值.极小值点极小值点、极大值点极大值点统称统

3、称极值点极值点,极大值极大值和和极小值极小值统称为统称为极值极值.极小值极小值f(a)思考:思考:极大值一定大于极小值吗?极大值一定大于极小值吗? yfx6x5x4x3x2x1xabxy (1 1)如图是函数)如图是函数 的图象的图象, ,试找出函数试找出函数 的的 极值点极值点, ,并指出哪些是极大值点并指出哪些是极大值点, ,哪些是极小值点?哪些是极小值点?o(2)如果把函数图象改为导函数)如果把函数图象改为导函数 的图象的图象? ? yfx yf x yf x答:答: yfx1、x1,x3,x5,x6是函数是函数y=f(x)的极值点,其中的极值点,其中x1,x5是函是函数数y=f(x)的

4、极大值点,的极大值点,x3,x6函数函数y=f(x)的极小值点。的极小值点。2、x2,x4是函数是函数y=f(x)的极值点的极值点,其中其中x2是函数是函数y=f(x)的极大值点,的极大值点,x4是函数是函数y=f(x)的极小值点。的极小值点。 下面分两种情况讨论下面分两种情况讨论: : (1 1)当)当 ,即,即x x2,2,或或x x-2-2时时; ;(2)当)当 ,即,即-2 x2时。时。例例4:求函数求函数 的极值的极值. 31443f xxx 31443f xxx 2422fxxxx 0fx 0,fx 解解: : 0fx 当当x x变化时,变化时, 的变化情况如下表:的变化情况如下表

5、: ,fxf x x fx f x, 2 2,22,28343当当x=-2x=-2时时, f(x), f(x)的极大值为的极大值为 28( 2)3f 423f 令令解得解得x=2,或或x=-2.0022单调递增单调递增单调递减当当x=2时时, f(x)的极小值为的极小值为22归纳:归纳:求函数求函数y=f(x)极值的方法是极值的方法是:练习:练习: 1、下列结论中正确的是(、下列结论中正确的是( )。)。 A、导数为零的点一定是极值点。、导数为零的点一定是极值点。 B、如果在、如果在x0附近的左侧附近的左侧f(x)0,右侧右侧f(x)0,那么那么 f(x0)是极大值。是极大值。 C、如果在、如

6、果在x0附近的左侧附近的左侧f(x)0,那么那么 f(x0)是极大值。是极大值。 、极大值一定大于极小值。、极大值一定大于极小值。B 3f xx0 xy(1)确定函数的定义域确定函数的定义域(2)求导数求导数f(x)(3)求方程求方程f(x) =0的全部解的全部解(4)把方程的解在定义域范围内分区间列成表把方程的解在定义域范围内分区间列成表格格(5)确定各区间确定各区间 f(x) 的符号的符号练习练习求下列函数的极值求下列函数的极值:;27)( )2( ; 26)( ) 1 (32xxxfxxxf解解: , 112)( ) 1 (xxf令令 解得解得 列表列表:, 0)( xfx0f (x)+

7、单调递增单调递增单调递减单调递减 )121,(),121(1212449所以所以, 当当 时时, f (x)有极小值有极小值121x.2449)121(f fx121x练习练习求下列函数的极值求下列函数的极值:;27)( )2( ; 26)( ) 1 (32xxxfxxxf解解: , 0273)( )2(2xxf令解得解得 列表列表:. 3, 321xxx(, 3)3(3, 3)3( 3, +)00f (x) +单调递增单调递增单调递减单调递减单调递增单调递增5454所以所以, 当当 x = 3 时时, f (x)有极大值有极大值 54 ;当当 x = 3 时时, f (x)有极小值有极小值

8、54 . fx习题习题 A组组下图是导函数下图是导函数 的图象的图象, 在标记的点中在标记的点中, 在哪一点处在哪一点处(1)导函数导函数 有极大值有极大值?(2)导函数导函数 有极小值有极小值?(3)函数函数 有极大值有极大值?(4)函数函数 有极小值有极小值?)(xfy)(xfy)(xfy)(xfy )(xfy 思考:思考:已知函数已知函数 在在 处取得极值。处取得极值。 (1)求函数)求函数 的解析式的解析式 (2)求函数)求函数 的单调区间的单调区间 322f xaxbxx2,1xx f x f x解:解:(1) 在在 取得极值,取得极值, 即即 解得解得 (2) , 由由 得得 的单

9、调增区间为的单调增区间为 由由 得得 的单调减区间为的单调减区间为 2322fxaxbx f x2,1xx 124203220abab11,32ab 3211232f xxxx 22fxxx 0fx 12xx 或 f x 0fx 21x f x) 1 , 2(, 21, 0) 1 (, 0)2( ff课堂小结课堂小结: 一、方法一、方法: (1)确定函数的定义域确定函数的定义域(2)求导数求导数f(x)(3)求方程求方程f(x) =0的全部解的全部解(4)把方程的解在定义域范围内分区间列成表格把方程的解在定义域范围内分区间列成表格(5)确定各区间确定各区间 的符号的符号二、通过本节课使我们学会了应用数形结合法去求函数的极二、通过本节课使我们学会了应用数形结合法去求函数的极值,并能应用函数的极值解决函数的一些问题值,并能应用函数的极值解决函数的一些问题今天我们学习函数的极值今天我们学习函数的极值,并利用导数求函数的极值并利用导数求函数的极值 fx

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁