《考点49随机事件的概率、古典概型、几何概型.doc》由会员分享,可在线阅读,更多相关《考点49随机事件的概率、古典概型、几何概型.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、圆学子梦想 铸金字品牌温馨提示: 此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。 考点49 随机事件的概率、古典概型、几何概型一、选择题1. (2013四川高考理科9)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是()A. B. C. D. 【解题指南】本题考查的是几何概型问题,首先明确两串彩灯开始亮是通电后4秒内任一时刻等可能发生,第一次闪亮相互独立,而满足要求的是两串彩灯第
2、一次闪亮的时刻相差不超过2秒.【解析】选C.由于两串彩灯第一次闪亮相互独立且在通电后4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件为如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是,故选C.2.(2013安徽高考文科5)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( )A. B. C. D.【解题指南】 以甲、乙为选择对象分情况考虑,先组合再求概率。【解析】选D.当甲、乙两人中仅有一人被录用时的概率;当甲、乙两人都被录用
3、时的概率,所以所求概率为。3.(2013新课标高考文科3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A. B. C. D. 【解析】选B.从1,2,3,4中任取2个不同的数有种,取出的2个数之差的绝对值为2有2种,则概率.4. (2013陕西高考理科5)如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无信号的概率是 ( ) A B. C D. 【解题指南】几何概型面积型的概率为随机事件所占有的面积和基
4、本事件所占有的面积的比值求出该几何概型的概率.【解析】选A.由题设可知,矩形ABCD的面积为2,曲边形DEBF的面积为,故所求概率为5.(2013江西高考文科4)集合A=2,3,B=1,2,3,从A,B中各取任意一个数,则这两数之和等于4的概率是( )A. B. C. D.【解题指南】属于古典概型,列举出所有的结果是关键.【解析】选C.所有的结果为(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种,满足所求事件的有2种,所以所求概率为.6. (2013湖南高考文科9).已知事件“在矩形ABCD的边CD上随机取一点P,使APB的最大边是AB”发生的概率为,则=( )A.
5、 B. C. D.【解题指南】本题的关键是找出使APB的最大边是AB的临界条件,首先是确定AD0”的概率为_【解题指南】对于几何概型,一个变量是长度,两个变量是面积。【解析】设事件A:“”,则,所以【答案】.12.(2013福建高考文科14)利用计算机产生“3a-10”发生的概率为 .【解题指南】对于几何概型,一个变量是长度,两个变量是面积。【解析】设事件A:“”,则,所以【答案】.13. (2013湖北高考文科15)在区间上随机地取一个数x,若x满足的概率为,则 . 【解题指南】解绝对值不等式,根据几何概型利用区间长度之比求解.【解析】由|m,得-mm,当m2时,由题意,m=2.5矛盾,舍去
6、;当2m0就去打球,若X=0就去唱歌,若X0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.【解题指南】(1)写出六个向量中取两个向量的所有情况,便知对应的数量积情况;(2)找出所求事件包含的结果代入古典概型概率公式.【解析】(1)X的所有可能取值为-2,-1,0,1.(2)数量积为-2的有,共1种;数量积为-1的有,共6种;数量积为0的有,共4种;数量积为1的有,共4种. 故所有可能的情况共有15种.所以小波去下棋的概率为;小波去唱歌的概率为,小波不去唱歌的概率为.21.(2013安徽高考理科21)某高校数学系计划在周六和周日各举行一次主题不同的心理
7、测试活动,分别由李老师和张老师负责,已知该系共有位学生,每次活动均需该系位学生参加(和都是固定的正整数)。假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系位学生,且所发信息都能收到。记该系收到李老师或张老师所发活动通知信息的学生人数为(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使取得最大值的整数。【解题指南】(1)利用对立事件的概率计算;(2)根据P(X=m)的关系式,利用不等式求解。 【解析】(1)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立的事件,所以相互独立,由于P(A)=P(B)=,因此。(2)当k=n时
8、,m只能取n,有P(X=m)=P(X=n)=1,当kn时,整数m满足,其中t是2k和n中的较小者,由于“李老师和张老师各自独立、随机地发活动通知信息给k位同学”所包含的基本事件总数为,当X=m时,同时收到李老师和张老师转发信息的学生人数恰为2k-m,仅收到李老师或仅收到张老师转发信息的学生人数均为m-k,由乘法计数原理知:事件X=m所包含基本事件数为,此时,当时,P(X=m) ,假如成立,则当能被n+2整除时,故P(X=m)在和处取得最大值;当不能被n+2整除时,处达最大值。(注:x表示不超过x的最大整数)下面证明。因为,所以,而,故,显然,因此。22.(2013北京高考文科16)下图是某市3
9、月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天。(1)求此人到达当日空气质量优良的概率(2)求此人在该市停留期间只有1天空气重度污染的概率。(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【解题指南】(1)(2)都是古典概型的概率计算问题,先列出基本事件空间所包含的基本事件及基本事件总数,再求出对应事件所包含的基本事件及基本事件总数,再求概率.(3)从图中找出哪三天的波动最大,则方差也就最大.【解析】(1)此人到达的时间从1日到13日
10、,共有13种情况。事件A=“此人到达当日空气质量优良”=1,2,3,7,12,13,包含基本事件数6。所以;(2) 此人在该市停留两天期间的空气质量所有可能情况有:(86,25),(25,57),(57,143),(143,220),(220.160),(160,40),(40,217),(217,160),(160,121),(121,158),(158,86),(86,79),(79,37)共有13种可能。其中只有1天重度污染的有:(143,220),(220,160),(40,217),(217,160)共4种可能。所以。(3)5,6,7三天。23.(2013广东高考理科17)某车间共有
11、12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.【解题指南】本题考查统计中的茎叶图、样本均值、用样本估计总体、古典概型等知识,除应用频率估算概率外,还特别要注意基本公式的应用.【解析】(1)样本均值;(2)样本中优秀工人为2名,频率为,由此估计该车间12名工人中有名优秀工人;(3)由于12名工人中有4名优秀工人,任取2人恰有1名优秀工人的概率.24.(2013广
12、东高考文科17)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量)频数(个)5102015(1) 根据频数分布表计算苹果的重量在的频率;(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率【解题指南】本题考查统计中的频率分布、分层抽样、古典概型等知识.【解析】(1)苹果的重量在的频率为;(2)重量在的有个;(3)设这4个苹果中重量在的为1,的为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在和中各
13、有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.25. (2013山东高考文科17)某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2),如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9()从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率()从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在18.5,23.9)中的概率【解题指南】()本题考查古典概型,要将“身高低于1.80的同学中任选2人”都列出,然后找“2人身高都在1.78
14、以下”所含的基本事件的个数,由古典概型概率公式求得结果.(II)要将基本事件都列出,然后找“2人身高都在1.70以上且体重指标都在18.5,23.9)中”所含的基本事件的个数,由古典概型概率公式求得结果.【解析】(I)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C),共3个.因此选到的2人身高都在1.78以下的概率为P=.(II)从该小组同学中任选2人,其一切
15、可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个.由于每个人被选到的机会均等,因此这些事件出现是等可能的.选到的2人身高都在1.70以上且体重都在(18.5,23.9)中的事件有:(C,D),(C,E),(D,E),共3个.因此选到的2人身高都在1.70以上且体重都在(18.5,23.9)中的概率为.26. (2013陕西高考文科19)有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:组别ABCDE人数501
16、0015015050() 为了调查评委对7位歌手的支持情况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表. 组别ABCDE人数5010015015050抽取人数6() 在()中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.【解题指南】按相同的比例从不同的组中抽取人数;相互独立同时发生的概率公式P(AB)=P(A)P(B),代入可求解.【解析】()从B组100人中抽取6人,即从50人中抽取3人,从150人中抽取9人.组别ABCDE人数5010015015050抽取人数36
17、993() A组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持1号歌手的概率为,B组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为,现从抽样评委A组3人,B组6人中各自任选一人,则这2人都支持1号歌手的概率.所以,从A,B两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为.27. (2013新课标全国高考文科19)经销商经销某种农产品,在一个销售季度内,每售出该产品获利润元,未售出的产品,每亏损元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示。经销商为下一个销售季度购进了该农产品。以(单位:,)表示下一个销售季度内的市场需求
18、量,(单位:元)表示下一个销售季度内经销该农产品的利润。(1)将表示为的函数;(2)根据直方图估计利润不少于元的概率;【解题指南】(1)依题意,可求得T关于x的分段函数;(2)由频率分布直方图可知,知利润T不少于57000元当且仅当用频率估计概率,可得概率的估计值;【解析】(1)当时,当时, 所以 (2)由(1)知利润T不少于57000元当且仅当由直方图知需求量的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估计值为0.7.28. (2013大纲版全国卷高考文科20)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为各局比赛的结果都相互独立,第1局甲当裁判.(I)求第局甲当裁判的概率;(II)求前局中乙恰好当次裁判的概率.【解析】(I)记表示事件“第2局结果为甲胜”,表示事件“第3局甲参加比赛时,结果为甲负”,表示事件“第4局甲当裁判”.则.(II)记表示事件“第1局比赛结果为乙胜”,表示事件“第2局乙参加比赛时,结果为乙胜”,表示事件“第3局乙参加比赛时,结果为乙胜”,表示事件“前4局中乙恰好当一次裁判”.则.关闭Word文档返回原板块。- 19 -