《2022年高三数学大一轮复习函数的单调性与最值学案理新人教A版 .pdf》由会员分享,可在线阅读,更多相关《2022年高三数学大一轮复习函数的单调性与最值学案理新人教A版 .pdf(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、读书之法 ,在循序而渐进 ,熟读而精思学案 5 函数的单调性与最值导学目标: 1. 理解函数的单调性、最大值、 最小值及其几何意义.2. 会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值自主梳理1单调性(1) 定义: 一般地, 设函数yf(x) 的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2) ,那么就说f(x)在区间D上是 _(2) 单调性的定义的等价形式:设x1,x2 a,b ,那么 (x1x2)(f(x1) f(x2)0 ?fx1fx2x1x20 ?f(x) 在 a,b 上 是 _ ; (x1x2)(f(x
2、1) f(x2)0 ?fx1fx2x1x20) 在 ( ,a) ,(a, ) 上是单调 _;在 ( a,0), (0 ,a) 上是单调 _;函数yxax(a0) 在_上单调递增2最值一般地,设函数yf(x) 的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x) M(f(x) M) ;存在x0I,使得f(x0) M. 那么,称M是函数yf(x) 的_自我检测1(2011杭州模拟) 若函数yax与ybx在(0 , ) 上都是减函数,则yax2bx在(0,)上是( ) A增函数B减函数C先增后减D先减后增2 设f(x) 是 ( ,) 上的增函数,a为实数,则有 ( ) Af(a)f(2a)
3、 Bf(a2)f(a) Cf(a2a)f(a) 3下列函数在(0,1)上是增函数的是( ) Ay12xByx1 Cyx22xDy5 4(20 11合肥月考 ) 设(a,b) ,(c,d) 都是函数f(x) 的单调增区间,且x1(a,b) ,x2(c,d),x1x2,则f(x1)与f(x2)的大小关系是( ) Af(x1)f(x2) Cf(x1) f(x2) D不能确定5 当x0,5时,函数f(x)3x24xc的值域为( ) Ac,55c B 43c,c 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 10 页读书之法 ,在循序而渐进 ,
4、熟读而精思C 43c,55c Dc,20c 探究点一函数单调性的判定及证明例 1设函数f(x) xaxb(ab0),求f(x) 的单调区间,并说明f(x) 在其单调区间上的单调性变式迁移 1 已知f(x) 是定义在R上的增函数, 对xR有f(x)0 , 且f(5) 1, 设F(x)f(x) 1fx,讨论F(x) 的单调性,并证明你的结论探究点二函数的单调性与最值例 2(2011烟台模拟)已知函数f(x) x22xax,x1 , ) (1) 当a12时,求函数f(x) 的最小值;(2) 若对任意x1 , ) ,f(x)0 恒成立,试求实数a的取值范围变式迁移 2 已知函数f(x) xaxa2在(
5、1 , ) 上是增函数,求实数a的取值范围探究点三抽象函数的单调性例 3(2011厦门模拟)已知函数f(x) 对于任意x,yR, 总有f(x) f(y) f(xy) ,且当x0 时,f(x)1 时,f(x)0. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 10 页读书之法 ,在循序而渐进 ,熟读而精思(1) 求f(1) 的值;(2) 判断f(x) 的单调性;(3) 若f(3) 1,解不等式f(|x|) 2. 分类讨论及数形结合思想例(12 分 ) 求f(x) x22ax1 在区间 0,2上的最大值和最小值【答题模板】解f(x) (x
6、a)21a2,对称轴为xa. (1) 当a0时,由图可知,f(x)minf(0) 1,f(x)maxf(2) 34a.3分 (2) 当 0a1 时,由图可知,f(x)minf(a) 1a2,f(x)maxf(2) 34a.6分 (3) 当 12 时,由图可知,f(x)minf(2) 34a,f(x)maxf(0) 1. 综上, (1) 当a0时,f(x)min 1,f(x)max34a;(2) 当 0a1 时,f(x)min 1a2,f(x)max34a;(3) 当 12 时,f(x)min34a,f(x)max 1.12分 【突破思维障碍】(1) 二次函数的单调区间是由图象的对称轴确定的故只
7、需确定对称轴与区间的关系由于对称轴是xa,而a的取值不定,从而导致了分类讨论(2) 不是应该分a2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间0,2所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f(0) ,也有可能是f(2) 1函数的单调性的判定与单调区间的确定常用方法有:(1) 定义法; (2) 导数法; (3) 图象法; (4) 单调性的运算性质2若函数f(x),g(x) 在区间D上具有单调性,则在区间D上具有以下性质:(1)f(x) 与f(x)C具有相同的单调性(2)f(x) 与af(x) ,当a0时,具有相同的单调性,当a0 时,具有相反的单调性(3) 当
8、f(x) 恒不等于零时,f(x) 与1fx具有相反的单调性(4) 当f(x) ,g(x) 都是增 ( 减 ) 函数时,则f(x) g(x) 是增 ( 减) 函数(5) 当f(x) ,g(x) 都是增 ( 减) 函数时,则f(x) g(x) 当两者都恒大于零时,是增( 减)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 10 页读书之法 ,在循序而渐进 ,熟读而精思函数;当两者都恒小于零时,是减( 增) 函数( 满分: 75 分) 一、选择题 ( 每小题 5 分,共 25 分) 1(2011泉州模拟 ) “a1”是“函数f(x) x2 2
9、ax3 在区间 1 , ) 上为增函数”的( ) A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2(2009天津 ) 已知函数f(x) x24x,x0,4xx2,xf(a) ,则实数a的取值范围是( ) A( , 1)(2 ,)B( 1,2) C( 2,1) D( , 2)(1 ,)3 (2009宁夏, 海南 ) 用 mina,b,c表示a,b,c三个数中的最小值 设f(x) min2x,x2,10 x(x0),则f(x)的最大值为( ) A4 B 5 C6 D7 4(2011丹东月考) 若f(x) x22ax与g(x) ax1在区间 1,2上都是减函数, 则a的取值范围是(
10、 ) A( 1,0) (0,1) B( 1,0) (0,1 C(0,1) D(0,1 5(2011葫芦岛模拟) 已知定义在R 上的增函数f(x) ,满足f( x)f(x) 0,x1,x2,x3 R, 且x1x20,x2x30,x3x10, 则f(x1) f(x2) f(x3) 的 值( ) A一定大于0 B一定小于0 C等于 0 D正负都有可能题号12345 答案二、填空题 ( 每小题 4 分,共 12 分) 6函数y (x3)|x| 的递增区间是_7设f(x) 是增函数,则下列结论一定正确的是_( 填序号 ) yf(x)2是增函数;y1fx是减函数;yf(x) 是减函数;y|f(x)| 是增
11、函数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 10 页读书之法 ,在循序而渐进 ,熟读而精思8设 0 x1,则函数y1x11x的最小值是 _三、解答题 ( 共 38 分) 9(12 分) (2011湖州模拟) 已知函数f(x) a1|x|. (1) 求证:函数yf(x) 在(0 , ) 上是增函数;(2) 若f(x)0 成立(1) 判断f(x) 在 1,1 上的单调性,并证明它;(2) 解不等式:f(x12)f(1x 1) ;(3) 若f(x) m22am1 对所有的a 1,1 恒成立,求实数m的取值范围答案自主梳理1(1) 增函
12、数 (减函数 ) (2) 增函数减函数(3) 单调区间(4) 递增递减( ,0), (0 ,)2. 最大 ( 小) 值自我检测1B 由已知得a0,b0. 所以二次函数对称轴为直线xb2aa,f(x) 在 R上单调递增,f(a21)f(a) 3C 常数函数不具有单调性 4D 在本题中,x1,x2不在同一单调区间内,故无法比较f(x1) 与f(x2) 的大小 5C f(x)3(x23)243c,x0,5,当x23时,f(x)min43c;当x5时,f(x)max55c. 课堂活动区例 1解题导引对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义( 基本步骤为:取点,作差或作
13、商,变形,判断) 来求解可导函数则可以利用导数求解 有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解解在定义域内任取x1,x2,且使x10,yf(x2) f(x1) x2ax2bx1ax1b精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 10 页读书之法 ,在循序而渐进 ,熟读而精思x2ax1bx2bx1ax1bx2bbax2x1x1bx2b. ab0,ba0, (ba)(x2x1)0,又x ( ,b) ( b, ) ,只有当x1x2b,或bx1x2时,函数才单调当x1x2b,或bx1x2时,f(x2) f(x1)0,
14、即 y0. yf(x) 在( ,b)上是单调减函数,在( b, ) 上也是单调减函数变式迁移1 解在 R 上任取x1、x2,设x1f(x1) ,F(x2) F(x1) f(x2)1fx2 f(x1) 1fx1 f(x2) f(x1)1 1fx1fx2 ,f(x) 是 R上的增函数,且f(5) 1,当x5 时, 0f(x)5 时f(x)1;若x1x25,则 0f(x1)f(x2)1,0f(x1)f(x2)1, 11fx1fx20,F(x2)x15,则f(x2)f(x1)1 ,f(x1) f(x2)1, 11fx1fx20,F(x2)F(x1) 综上,F(x) 在 (, 5)为减函数,在(5 ,
15、) 为增函数例 2解(1) 当a12时,f(x) x12x2,设x1,x21 , ) 且x1x2,f(x1) f(x2) x112x1x212x2(x1x2)(1 12x1x2) x1x2,x1x20,又 1x10,f(x1) f(x2)0,f(x1)0 恒成立,等价于x22xa0 恒成立设yx22xa,x 1 , ) ,yx22xa(x 1)2a1 递增,当x1 时,ymin3a,于是当且仅当ymin3a0 时,函数f(x)恒成立,故a3. 方法二f(x) xax2,x 1 , ) ,当a0时,函数f(x) 的值恒为正,满足题意,当a0 时,函数f(x)0 恒成立,故a3. 精选学习资料 -
16、 - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 10 页读书之法 ,在循序而渐进 ,熟读而精思方法三在区间 1 , ) 上f(x)x22xax0 恒成立等价于x22xa0恒成立即ax22x恒成立又x 1 , ) ,ax22x恒成立,a应大于函数ux22x,x 1 , ) 的最大值ax22x (x1)21. 当x1 时,u取得最大值3,a3. 变式迁移 2 解设 1x1x2. 函数f(x) 在(1, ) 上是增函数,f(x1) f(x2) x1ax1a2(x2ax2a2) (x1x2)(1 ax1x2)0. 又x1x20,即ax1x2恒成立1x11,x1
17、x2x2,则f(x1) f(x2) f(x1x2x2) f(x2) f(x1x2) f(x2) f(x2) f(x1x2) 又x0 时,f(x)0,f(x1x2)0 ,即f(x1)0,代入得f(1) f(x1) f(x1) 0,故f(1) 0. (2) 任取x1,x2(0 , ) ,且x1x2,则x1x21,由于当x1 时,f(x)0 ,f(x1x2)0,即f(x1) f(x2)0 ,f(x1)0 时,由f(|x|) 2,得f(x)9;当x0时,由f(|x|) 2,得f(x)9,故x9或xa,解得 2a0 时,它有两个减区间为( , 1) 和( 1, ) ,故只需区间1,2是f(x) 和g(x
18、) 的减区间的子集即可,则a的取值范围是00,x2x30,x3x10,x1x2,x2x3,x3x1. 又f(x1)f( x2) f(x2) ,f(x2)f( x3) f(x3) ,f(x3)f( x1) f(x1) ,f(x1) f(x2) f(x3) f(x2) f(x3) f(x1) f(x1) f(x2) f(x3)0. 60 ,32 解析yxxxxxx. 画图象如图所示:可知递增区间为0 ,32 7解析举例:设f(x) x,易知均不正确84 解析y1x11x1xx,当 0 x1 时,x(1 x) (x12)21414. y4.9(1) 证明当x (0 , ) 时,f(x) a1x,设
19、0 x10,x2x10. f(x1) f(x2) (a1x1) (a1x2) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 10 页读书之法 ,在循序而渐进 ,熟读而精思1x21x1x1x2x1x20. (5分) f(x1)f(x2) ,即f(x) 在 (0 , ) 上是增函数(6分) (2) 解由题意a1x2x在(1 , ) 上恒成立,设h(x) 2x1x,则a0,h(x) 在(1 ,) 上单调递增 (10分) 故ah(1) ,即a3.a的取值范围为( , 3 (12分) 10解设f(x) 的最小值为g(a),则只需g(a) 0,由
20、题意知,f(x) 的对称轴为a2. (1) 当a24 时,g(a) f( 2) 73a0,得a73. 又a4,故此时的a不存在(4分) (2) 当a2 2,2 ,即 4a4 时,g(a) f( a2) 3aa240得6a2.又4a4,故 4a2. (8分) (3) 当a22,即a4 时,g(a) f(2) 7a0 得a 7. 又a4,故 7a4. 综上得所求a的取值范围是 7a2. (12分) 11解(1) 任取x1,x2 1,1 ,且x10,x1x20,f(x1) f(x2)0,即f(x1)f(x2) f(x) 在 1,1 上单调递增(4分) 精选学习资料 - - - - - - - - -
21、 名师归纳总结 - - - - - - -第 9 页,共 10 页读书之法 ,在循序而渐进 ,熟读而精思(2) f(x) 在 1,1 上单调递增,x121x 1,1x121,11x 1分32x1. (9分) (3) f(1) 1,f(x) 在 1,1 上单调递增在 1,1 上,f(x) 1. (10分) 问题转化为m22am11,即m22am0,对a 1,1 成立下面来求m的取值范围设g(a) 2mam20. 若m0,则g(a) 00,自然对a 1,1 恒成立若m0, 则g(a) 为a的一次函数, 若g(a) 0, 对a 1,1 恒成立,必须g( 1)0,且g(1) 0,m 2,或m2.m的取值范围是m0或|m| 2. (14 分) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 10 页