《2022年高一数学人教版知识点.docx》由会员分享,可在线阅读,更多相关《2022年高一数学人教版知识点.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高一数学人教版知识点 天才就是勤奋曾经有人这样说过。假如这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是须要不断练习与记忆的。下面是我给大家整理的一些高一数学的学问点,希望对大家有所帮助。 高一年级数学学问点梳理 1.函数的奇偶性。 (1)若f(x)是偶函数,那么f(x)=f(-x)。 (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。 (3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0)。 (4)若所给函数的解析式较为困难,应先化简,再推断其奇偶性。 (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调
2、区间内有相反的单调性。 2.复合函数的有关问题。 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);探讨函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定。 3.函数图像(或方程曲线的对称性)。 (1)证明函数图像的对称性,即证明图像上随意点关于对称中心(对称轴)的对称点仍在图像上。 (2)证明图像C1与C2的对称性,即证明C1上随意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。 (3)曲
3、线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。 (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。 (5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。 4.函数的周期性。 (1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数。 (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数。
4、(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数。 (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。 5.推断对应是否为映射时,抓住两点。 (1)A中元素必需都有象且。 (2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象。 6.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。 7.对于反函数,应驾驭以下一些结论。 (1)定义域上的单调函数必有反函数。 (2)奇函数的反函数也是奇函数。 (3)定义域为非单元素集的偶函数不存在反函数。 (4)周期函数不存在反函数。 (5)互为反函数的两个函数具
5、有相同的单调性。 (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA)。 8.处理二次函数的问题勿忘数形结合。 二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。 9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。 10.恒成立问题的处理方法。 (1)分别参数法。 (2)转化为一元二次方程的根的分布列不等式(组)求解。 人教版高一数学学问点整理 复数定义 我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i
6、称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数表达式 虚数是与任何事物没有联系的,是肯定的,所以符合的表达式为: a=a+ia为实部,i为虚部 复数运算法则 加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i; 减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i; 乘法法则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i; 除法法则:(a+bi)/(c+di)=(ac+bd)/(c2+d2)+(bc-ad)/(c2+d2)i. 例如
7、:(a+bi)+(c+di)-(a+c)+(b+d)i=0,最终结果还是0,也就在数字中没有复数的存在。(a+bi)+(c+di)-(a+c)+(b+d)i=z是一个函数。 复数与几何 几何形式 复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来探讨。也可反过来用复数的理论解决一些几何问题。 向量形式 复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何说明。 三角形式 复数z=a+bi化为三角形式 高一年级数学学习方法归纳 理解老师讲解的内容 学生对老师所讲的内容的理解,还没能达到老师所要求的
8、层次。因此,每天在做作业之前,肯定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,经常是好学生与差学生的区分。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。假如自己又不留意对此落实,天长日久,就会造成极大损失。 学会做题 要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告知自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能由博反约,把厚书读成薄书。积累起自己的独特的,也就是最适合自己进行复习的材料。这样积累起来的资料才有活力,才能用的上。 整理资料 要留意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间依次整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。 高一数学人教版学问点第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页