《中学数学—B2微课程设计与制作-微课程设计方案+教学设计(国培微能力认证优秀作业) (39).doc》由会员分享,可在线阅读,更多相关《中学数学—B2微课程设计与制作-微课程设计方案+教学设计(国培微能力认证优秀作业) (39).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、YOUR LOGO原 创 文 档 请 勿 盗 版12.2 三角形全等的判定第1课时 “边边边”学习目标 1三角形全等的“边边边”的条件 2了解三角形的稳定性 3经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程学习重点 三角形全等的条件学习难点 寻求三角形全等的条件 学习方法:自主学习与小组合作探究学习过程: 一回顾思考: 1(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边 (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:定义_;“SAS”公理_“ASA”定理_二、新课 1. 回忆前面研究过的全等三角形 已知ABCABC,
2、找出其中相等的边与角 图中相等的边是:AB=AB、BC=BC、AC=AC 相等的角是:A=A、B=B、C=C2.已知三角形ABC你能画一个三角形与它全等吗?怎样画? 阅读教材 归纳:三边对应相等的两个三角形全等,简写为“边边边”或“SSS” 书写格式: 在ABC和A1B1C1中 ABCA1B1C1(SSS)3. 小组合作学习(1)如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD 证明:D是BC的中点 _ 在ABD和ACD中 ( ) (2)如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要用“边边边”证明ABCFDE,除了已知中的A
3、C=FE,BC=DE以外,还应该有一个条件:_,怎样才能得到这个条件?_ _(3)如图,AB=AC, AD是BC边上的中线P是AD 的一点,求证:PB=PC4.三角形的稳定性: 生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性所以日常生活中常利用三角形做支架就是利用三角形的稳定性例如屋顶的人字梁、大桥钢架、索道支架等(阅读P98) 三、阅读教材例题: 四自学检测五评价反思 概括总结 1. 本节课我们探索得到了三角形全等的条件,又发现了证明三角形全等的一个规律SSS并利用它可以证明简单的三角形全等问题2.到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?定义_;“SAS”公理_“ASA”定理_“SSS”定理_六作业