新高考数学一轮复习导数讲义.docx

上传人:ge****by 文档编号:24336705 上传时间:2022-07-04 格式:DOCX 页数:11 大小:610.13KB
返回 下载 相关 举报
新高考数学一轮复习导数讲义.docx_第1页
第1页 / 共11页
新高考数学一轮复习导数讲义.docx_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《新高考数学一轮复习导数讲义.docx》由会员分享,可在线阅读,更多相关《新高考数学一轮复习导数讲义.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、新高考一轮复习 导数一函数的切线问题一、基础知识:(一)与切线相关的定义1、切线的定义:在曲线的某点A附近取点B,并使B沿曲线不断接近A。这样直线AB的极限位置就是曲线在点A的切线。(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A附近的点向不断接近,当与距离非常小时,观察直线是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数在处的切线,与曲线有两个公共点。(3)在定义中,点不断接近包含两个方向,点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线的极限位置唯一时,这个极限

2、位置才能够成为在点处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如在处,通过观察图像可知,当左边的点向其无限接近时,割线的极限位置为,而当右边的点向其无限接近时,割线的极限位置为,两个不同的方向极限位置不相同,故在处不含切线(4)由于点沿函数曲线不断向接近,所以若在处有切线,那么必须在点及其附近有定义(包括左边与右边)2、切线与导数:设函数上点在附近有定义且附近的点,则割线斜率为:当无限接近时,即接近于零,直线到达极限位置时的斜率表示为:,即切线斜率,由导数定义可知:。故为在处切线的斜率。这是导数的几何意义。3、从导数的几何意义中可通过数形结合解释几类不含导数的点:(1)函数的边界

3、点:此类点左侧(或右侧)的点不在定义域中,从而某一侧不含割线,也就无从谈起极限位置。故切线不存在,导数不存在;与此类似还有分段函数如果不连续,则断开处的边界值也不存在导数(2)已知点与左右附近点的割线极限位置不相同,则不存在切线,故不存在导数。例如前面例子在处不存在导数。此类情况多出现在单调区间变化的分界处,判断时只需选点向已知点左右靠近,观察极限位置是否相同即可(3)若在已知点处存在切线,但切线垂直轴,则其斜率不存在,在该点处导数也不存在。例如:在处不可导综上所述:(1)-(3)所谈的点均不存在导数,而(1)(2)所谈的点不存在切线,(3)中的点存在切线,但没有导数。由此可见:某点有导数则必

4、有切线,有切线则未必有导数 。(二)方法与技巧:1、求切线方程的方法:一点一方向可确定一条直线,在求切线时可考虑先求出切线的斜率(切点导数)与切点,在利用点斜式写出直线方程2、若函数的导函数可求,则求切线方程的核心要素为切点的横坐标,因为可“一点两代”,代入到原函数,即可得到切点的纵坐标,代入到导函数中可得到切线的斜率,从而一点一斜率,切线即可求。所以在解切线问题时一定要盯住切点横坐标,千方百计的把它求解出来。3、求切线的问题主要分为两大类,一类是切点已知,那么只需将切点横坐标代入到原函数与导函数中求出切点与斜率即可,另一类是切点未知,那么先要设出切点坐标,再考虑利用条件解出核心要素,进而转化

5、成第一类问题4、在解析几何中也学习了求切线的方法,即先设出切线方程,再与二次方程联立利用求出参数值进而解出切线方程。解析几何中的曲线与函数同在坐标系下,所以两个方法可以互通。若某函数的图像为圆锥曲线,二次曲线的一部分,则在求切线时可用解析的方法求解,例如:(图像为圆的一部分)在处的切线方程,则可考虑利用圆的切线的求法进行解决。若圆锥曲线可用函数解析式表示,像焦点在轴的抛物线,可看作关于的函数,则在求切线时可利用导数进行快速求解(此方法也为解析几何中处理焦点在轴的抛物线切线问题的重要方法)5、在处理切线问题时要注意审清所给已知点是否为切点。“在某点处的切线”意味着该点即为切点,而“过某点的切线”

6、则意味着该点有可能是切点,有可能不是切点。如果该点恰好在曲线上那就需要进行分类讨论了。二、典型例题例1:求函数在处的切线方程例2:已知函数,则:(1)在曲线上是否存在一点,在该点处的切线与直线平行(2)在曲线上是否存在一点,在该点处的切线与直线垂直例3:函数上一点处的切线方程为,求的值例4:曲线在点处的切线与坐标轴所围三角形的面积为()A. B. C. D. 例5:一点在曲线上移动,设点处切线的倾斜角为,则角的取值范围是( ) A. B. C. D. 例6:求过点,且与曲线相切的直线方程例7:设函数,若曲线的斜率最小的切线与直线平行,求的值例9:(2014,北京)已知函数,若过点存在3条直线与

7、曲线相切,求的取值范围例10:已知曲线,点在抛物线上且的横坐标为,过作斜率为的直线交于另一点,交轴于,过点且与垂直的直线与交于另一点,问是否存在实数,使得直线与曲线相切?若存在,求出的值,若不存在,说明理由。三、近年好题精选:1、设函数,曲线在点处的切线方程为,则曲线在点处的切线方程为_2、已知直线与曲线切于点,则的值为_3、若曲线与曲线存在公切线,则的最值情况为( )A最大值为 B最大值为 C最小值为 D最小值为4、已知曲线在点处的切线与曲线相切,则_ 5、设曲线在点处的切线与曲线上点处的切线垂直,则的坐标为_6、曲线在点处的切线方程为_7、若曲线上点处的切线平行于直线,则点的坐标为_8、已

8、知函数,则过原点且与函数图像相切的直线方程为_9、已知函数,若函数的图像在处的切线方程为,则_,_二函数的单调区间 单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。一、基础知识:1、函数的单调性:设的定义域为,区间,若对于,有,则称在上单调递增,称为单调递增区间。若对于,有,则称在上单调递减,称为单调递减区间。2、导数与单调区间的联系(1)函数在可导,那么在上单调递增 此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线

9、斜率均大于零。等号成立的情况:一是单调区间分界点导数有可能为零,例如:的单调递增区间为,而,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为在处的导数为0,但是位于单调区间内。(2)函数在可导,则在上单调递减(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由的符号能否推出在的单调性呢?如果不是常值函数,那么便可由导数的符号对应推出函数的单调性。(这也是求函数单调区间的理论基础)3、利用导数求函数单调区间的步骤(1)确定函数的定义域(2)求出的导函数(3)令(或),求出的解集,即为的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单

10、调区间有限制作用(单调区间为定义域的子集)。另一方面通过定义域对取值的限制,对解不等式有时会起到简化的作用,方便单调区间的求解(2)在求单调区间时优先处理恒正恒负的因式,以简化不等式(3)一般可令,这样解出的解集就是单调增区间(方便记忆),若不存在常值函数部分,那么求减区间只需要取增区间在定义域上的补集即可(简化求解的步骤)(4)若的解集为定义域,那么说明是定义域上的增函数,若的解集为,那么说明没有一个点切线斜率大于零,那么是定义域上的减函数(5)导数只是求单调区间的一个有力工具,并不是唯一方法,以前学过的一些单调性判断方法也依然好用,例如:增+增增,减+减减,增减,复合函数单调性同增异减等。

11、如果能够通过结论直接判断,那么就无需用导数来判定。5、求单调区间的一些注意事项(1)单调区间可以用开区间来进行表示,如果用闭区间那么必须保证边界值在定义域内。例如函数的单调减区间为,若写成就出错了(0不在定义域内)(2)如果增(或减)区间有多个,那么在书写时用逗号隔开,一定不要用并集的符号。有些同学觉得不等式的解集是多个部分时用“”连接,那么区间也一样,这个观点是错误的。并集是指将两个集合的元素合并到一起成为一个集合,用在单调区间上会出现问题。依然以为例,如果写成,那么就意味着从合并在一起的集合中任取两个变量,满足单调减的条件。由性质可知,如果在两个区间里各取一个,是不满足单调减的性质的。6、

12、二阶导函数的作用:几何意义:导数的符号决定原函数的单调性,对于而言,决定的是的单调性。当时,单调递增,意味着随的增大而增大,由于导数的几何意义为切线斜率,故切线斜率随的增大而增大;同理,当时,单调递减,则切线斜率随的增大而减少。那么在图像上起到什么作用呢?单调增有三种: 其不同之处在于切线斜率随自变量变大的变化不同,所以如果说是决定函数单调性的,那么在已知单调性的前提下,能够告诉我们是怎样增,怎样减的,进而对作图的精细化提供帮助。(1)当,其图像特点为: 我们称这样的函数为下凸函数(2)当,其图像特点为: 我们称这样的函数为上凸函数代数意义:当通过无法直接判断符号时,可通过二阶导函数先确定一阶

13、导函数的单调性,再看能否利用条件判断符号。二、典型例题:例1:下列函数中,在上为增函数的是( )例2:函数的单调递增区间是( )A. B. C. D. 例3:求函数的单调区间(2009宁夏,21题(1)例4:求函数的单调区间例5:求函数的单调区间例6:求函数的单调区间例7:(1)若函数在区间单调递增,则的取值集合是_(2)若函数的递增区间是,则的取值集合是_例8:,若在上存在单调递增区间,则的取值范围是_例9:设函数(其中是自然对数的底数),若在其定义域内为单调函数,求实数的取值范围例10:若函数在区间内单调递增,则取值范围是( )A B C D三含参数函数的单调区间 在高考导数的综合题中,所

14、给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临的分类讨论。本节通过一些例题总结参数讨论的方法与技巧,便于更加快速准确的分析含参数函数的单调区间。一、基础知识:1、导数解单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间。即确定定义域求出导函数令解不等式得到递增区间后取定义域的补集(减区间)单调性列出表格2、求含参函数单调区间的实质解含参不等式,而定义域对的限制有时会简化含参不等式的求解3、求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4、关于分类讨论的时机与分界点的确定(1)分类时机:并不是所有

15、含参问题均需要分类讨论,例如解不等式:,其解集为,中间并没有进行分类讨论。思考:为什么?因为无论参数为何值,均是将移到不等号右侧出结果。所以不需要分类讨论,再例如解不等式,第一步移项得:(同样无论为何值,均是这样变形),但是第二步不等式两边开方时发现的不同取值会导致不同结果,显然是负数时,不等式恒成立,而是正数时,需要开方进一步求解集,分类讨论由此开始。体会:什么时候开始分类讨论?简而言之,当参数的不同取值对下一步的影响不相同时,就是分类讨论开始的时机。所以一道题是否进行分类讨论不是一开始就决定的,而是在做的过程中遇到不同值导致不同步骤和结果,就自然的进行分类讨论。(2)分界点的确定:分类讨论

16、一定是按参数的符号分类么?不一定。要想找好分界点,首先要明确参数在问题中所扮演的角色。例如上面的不等式,所扮演的角色是被开方数,故能否开方是进行下一步的关键,那自然想到按的符号进行分类讨论。(3)当参数取值为一个特定值时,可将其代入条件进行求解(4)当参数扮演多个角色时,则以其中一个为目标进行分类,在每一大类下再考虑其他角色的情况以及是否要进行进一步的分类。 例如:解不等式:,可得:此时扮演两个角色,一个是的系数,将决定解集是小大根之外还是小大根之间,另一个角色是决定的大小,进而要和来角逐大小根。那么在处理时可先以其中一个为主要目标,例如以系数的正负,进行分类。当时,此时不等式的解集为小大根之

17、间,而由于,以此为前提,故小大根不存在问题,解集为当时,不等式变为当时,不等式解集为小大根之外,而,的大小由的取值决定,所以自然考虑再结合小大根进行进一步讨论了。(重视的对比)时,不等式解集为时,不等式化为时,不等式解集为希望通过此例能够体会分类讨论的时机与分界,若能领悟,其分类讨论不再是一个难点,而是有线索可循了。二、典型例题:例1:已知函数,求的单调区间例2:已知函数(1)若的图像在处的切线与直线垂直,求实数的值(2)求函数的单调区间例3:已知函数,求的单调区间例5:已知函数,讨论的单调性例6:已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)求的单调区间例7:已知函数.求函数的单

18、调区间.例8:已知函数,求的单调区间例9:设函数,求的单调区间;例10:已知函数,其中,试讨论的单调性四 函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数的定义域为,若,使得对,均满足,那么称为函数的一个最大值点,称为函数的最大值(2)设函数的定义域为,若,使得对,均满足,那么称为函数的一个最小值点,称为函数的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。例如:,由单调性可得有最小值,但由于取不到4,所以尽管函数值无限接近于,但就是达不到。没有最大值。(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或

19、最小值点)的个数可以不唯一,例如,其最大值点为,有无穷多个。2“最值”与“极值”的区别和联系右图为一个定义在闭区间上的函数的图象图中与是极小值,是极大值函数在上的最大值是,最小值是(1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,

20、最值只要不在端点必定是极值3、结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数在上的最大值与最小值的步骤如下:(1)求在内的极值;(2)将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础 7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是

21、否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:,可通过导数求出,由此可得到对于任意的,均有,即不等式二、典型例题:例1:求函数的最值例2:已知函数,是的一个极值点,求:(1)实数的值(2)判断在区间上是否存在最大值和最小值例3:已知函数,是否存在实数,使得在上取得最大值,最小值若存在,求出的值,若不存在,请说明理由例4:求函数()的最值例5:已知函数的定义域为,求在上的最值例6:已知函数在区间上取得最小值4,则_例7:已知函数在上是增函数,函数.当时,函数的最大值与最小值的差为,则_.例8:若函数有最小值,则实数的取值范围是( )A. B. C. D. 例9:已知在区间上任取三个不同的数,均存在以为边长的三角形,则的取值范围是.例10:若函数在上有最小值,则实数的取值范围是( )A B C D11学科网(北京)股份有限公司

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁