《132__球的体积和表面积.ppt》由会员分享,可在线阅读,更多相关《132__球的体积和表面积.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.3.2 1.3.2 球的体积和表面积球的体积和表面积AOirO.niinRRri,2 , 1,)1(22,21RRr,)(222nRRr1、球的体积、球的体积B2C2BiCiAO,)2(223nRRr已知球的半径为已知球的半径为RnininRnRrVii,2 , 1,)1(1 232问题问题:已知球的半径为已知球的半径为R,用用R表示球的体积表示球的体积.niinRRri, 2 , 1,)1(22nVVVV21半球) 1(2122223nnnnR6) 12() 1(123nnnnnnR6) 12)(1(11 23nnnR例例1. 1.钢球直径是钢球直径是5cm,5cm,求它的体积求它的体积
2、. .3336125)25(3434cmRV334RV定理定理:半径是半径是R的球的体积的球的体积变式变式1 1:一种空心钢球的质量是:一种空心钢球的质量是142g,142g,外径外径是是5cm,5cm,求它的内径求它的内径.( .(钢的密度是钢的密度是7.9g/cm7.9g/cm2 2) )解:设空心钢球的内径为2xcm,则钢球的质量是答:空心钢球的内径约为4.5cm.142 34)25(349 . 733x3 .1149 . 73142)25(33x由计算器算得:24. 2x5 . 42 x( (变式变式2) 2)把钢球放入一个正方体的有盖纸把钢球放入一个正方体的有盖纸盒中盒中, ,至少要
3、用多少纸至少要用多少纸? ?用料最省时用料最省时, ,球与正方体有什么位置关系球与正方体有什么位置关系? ?球内切于正方体球内切于正方体2215056cmS侧侧棱长为侧棱长为5cm1.球的直径伸长为原来的球的直径伸长为原来的2倍倍,体积变为原来体积变为原来的几倍的几倍?2.一个正方体的顶点都在球面上一个正方体的顶点都在球面上,它的棱长是它的棱长是4cm,求这个球的体积求这个球的体积. 8倍倍332变式变式3.有三个球有三个球,一球切于正方体的各面一球切于正方体的各面,一球切于正方体的各侧棱一球切于正方体的各侧棱,一球过正方体一球过正方体的各顶点的各顶点,求这三个球的体积之比求这三个球的体积之比
4、.作轴截面作轴截面例例2、某街心花园有许多钢球(钢的密度、某街心花园有许多钢球(钢的密度是是7.9g/cm3),每个钢球重每个钢球重145kg,并且外,并且外径等于径等于50cm,试根据以上数据,判断钢,试根据以上数据,判断钢球是实心的还是空心的。如果是空的球是实心的还是空心的。如果是空的,请请你计算出它的内径(你计算出它的内径(取取3.14,结果精确,结果精确到到1cm)。)。1.两种方法两种方法:化整为零的思想方法和化整为零的思想方法和“分割分割,求求和和,取极限取极限”的数学方法的数学方法.2.一个观点一个观点:在一定条件下在一定条件下,化曲为直的辨证观化曲为直的辨证观点点.3.一个公式
5、一个公式:半径为半径为R的球的体积是的球的体积是334RV4.解决两类问题解决两类问题:两个几何体相切和相接两个几何体相切和相接作适当的轴截面作适当的轴截面两个几何体相切两个几何体相切:一个几何体的各个一个几何体的各个面面与另与另一个几何体的各一个几何体的各面面相切相切.两个几何体相接两个几何体相接:一个几何体的所有一个几何体的所有顶点顶点都都 在另一个几何体的表面上在另一个几何体的表面上球面:半圆以它的直径为旋转轴,旋转所成的曲面。球面:半圆以它的直径为旋转轴,旋转所成的曲面。球球( (即球体即球体):):球面所围成的几何体。球面所围成的几何体。它包括它包括球面球面和和球面所包围的空间球面所
6、包围的空间。半径是半径是R R的球的体积:的球的体积:推导方法推导方法:334RV 分割分割求近似和求近似和化为准确和化为准确和小结:小结:第一步:分割第一步:分割O O球面被分割成球面被分割成n n个网格,个网格, 表面积分别为:表面积分别为:nSSSS.321,则球的表面积:则球的表面积:nSSSSS.321则球的体积为:则球的体积为:设设“小锥体小锥体”的体积为:的体积为:iViVnVVVVV.321iSO O2 2、球的表面积、球的表面积O O第二步:求近似和第二步:求近似和O Oih由第一步得:由第一步得:nVVVVV.321nnhShShShSV31313131332211.iii
7、hSV31iSiV第三步:转化为球的表面积第三步:转化为球的表面积RSVii31 如果网格分的越细如果网格分的越细, ,则则: :RSRSRSRSVni3131313132.RSSSSSRni313132).( 由由 得得: :334RV 球的体积球的体积: :2 24 4R RS S iSiVih的值就趋向于球的半径的值就趋向于球的半径R RRihiSO OiV“小锥体小锥体”就越接近小棱锥。就越接近小棱锥。(1)(1)若球的表面积变为原来的若球的表面积变为原来的2 2倍倍, ,则半径变为原来的则半径变为原来的倍。倍。(2)(2)若球半径变为原来的若球半径变为原来的2 2倍,则表面积变为原来
8、的倍,则表面积变为原来的倍。倍。(3)(3)若两球表面积之比为若两球表面积之比为1:21:2,则其体积之比是,则其体积之比是。(4)(4)若两球体积之比是若两球体积之比是1:21:2,则其表面积之比是,则其表面积之比是。练习:练习:2422:134:1例例. .如图,正方体如图,正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1的棱长为的棱长为a,a,它的各个顶它的各个顶点都在球点都在球O O的球面上,问球的球面上,问球O O的表面积。的表面积。A AB BC CD DD D1 1C C1 1B B1 1A A1 1O OA AB BC CD DD D1 1C C1 1B
9、 B1 1A A1 1O O分析:正方体内接于球,则由球和正方体都是中心对称图形可分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。知,它们中心重合,则正方体对角线与球的直径相等。略解:2222211113423,)2()2(22:aRSaRaaRaDBRDBDDBRt得得:,中中变题变题1.1.如果球如果球O O和这个正方体的六个面都相切,则有和这个正方体的六个面都相切,则有S=S=。变题变题2.2.如果球如果球O O和这个正方体的各条棱都相切,则有和这个正方体的各条棱都相切,则有S=S=。2a2 2 a 关键关键:找正方体的棱长找正方体的棱长a a与球半径与球半径R R之间的关系之间的关系