2422第3课时切线长定理.ppt

上传人:仙*** 文档编号:19543225 上传时间:2022-06-09 格式:PPT 页数:39 大小:2.52MB
返回 下载 相关 举报
2422第3课时切线长定理.ppt_第1页
第1页 / 共39页
2422第3课时切线长定理.ppt_第2页
第2页 / 共39页
点击查看更多>>
资源描述

《2422第3课时切线长定理.ppt》由会员分享,可在线阅读,更多相关《2422第3课时切线长定理.ppt(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、24.2 直线和圆的位置关系第3课时 切线长定理【学习目标】【学习目标】1通过动手操作、度量、猜想、验证,理解切线通过动手操作、度量、猜想、验证,理解切线长的概念,掌握切线长定理;知道三角形的内切圆长的概念,掌握切线长定理;知道三角形的内切圆和三角形的内心的概念和三角形的内心的概念2通过对例题的学习,培养分析问题、总结问题通过对例题的学习,培养分析问题、总结问题的习惯,提高综合运用知识和解决问题的能力,培的习惯,提高综合运用知识和解决问题的能力,培养数形结合的思想养数形结合的思想【学习重点】【学习重点】切线长定理及其应用,三角形的内切圆和三角形内切线长定理及其应用,三角形的内切圆和三角形内心的

2、概念心的概念【学习难点】【学习难点】与切线长定理有关的证明和计算问题;三角形内切与切线长定理有关的证明和计算问题;三角形内切圆的计算问题圆的计算问题同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?情境引入情境引入切线长定理及应用问题1 上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作圆的切线,可以作几条?POBAO.PA B 互动探究互动探究P1.切线长的定义: 切线上一点到切点之间的线段的长叫作这点到圆的切线长AO切线是直线,不能度量.切线长是线段的长,这条线段的两个端点分别是圆外一点和切

3、点,可以度量2.切线长与切线的区别在哪里?知识要点知识要点问题2 PA为O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B OB是O的一条半径吗? PB是O的切线吗?(利用图形轴对称性解释) PA、PB有何关系? APO和BPO有何关系?O.PABPO切线长定理: 过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.PA、PB分别切O于A、BPA = PBOPA=OPB几何语言:总结:切线长定理为证明线段相等、角相等提供了新的方法.知识要点知识要点O.P已知,如图PA、PB是O的两条切线,A、B为切点.求证:PA=PB,APO=BPO.证明:PA切O于点A,

4、OAPA.同理可得OBPB.OA=OB,OP=OP,RtOAPRtOBP,PA=PB,APO=BPO.AB推理验证推理验证若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB.证明:PA,PB是 O的切线,点A,B是切点 PA = PB ,OPA=OPB PAB是等腰三角形,PM为顶角的平分线 OP垂直平分AB.O.PABM想一想想一想若延长PO交 O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.证明:PA,PB是 O的切线,点A,B是切点, PA = PB ,OPA=OPB. PC=PC. PCA PCB, AC=BC.CA=CBO.PAB

5、C例1 已知:如图,四边形ABCD的边AB、BC、CD、DA与 O分别相切与点E、F、G、H.求证:AB+CD=AD+BC.ABCDO证明:AB、BC、CD、DA与 O分别相切与点E、F、G、H,EFGH AE=AH,BE=BF,CG=CF,DG=DH. AE+BE+CG+DG=AH+BF+CF+DH.AB+CD=AD+BC.典例精析典例精析例2 为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径解析:欲求半径OP,取圆的圆心为O,连

6、OA,OP,由切线性质知OPA为直角三角形,从而在RtOPA中由勾股定理易求得半径O在RtOPA中,PA5,POA30,OQ解:过O作OQAB于Q,设铁环的圆心为O,连接OP、OA.AP、AQ为 O的切线,AO为PAQ的平分线,即PAOQAO.又BAC60,PAOQAOBAC180,PAOQAO60.=5 3cm.OP即铁环的半径为5 3cm.PPA、PB是O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP= ;(2)若BPA=60 ,则OP= .56练一练练一练 小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?三角

7、形的内切圆及作法合作探究合作探究问题1 如果最大圆存在,它与三角形三边应有怎样的位置关系? OOOO最大的圆与三角形三边都相切三角形角平分线的这个性质,你还记得吗?问题2 如何求作一个圆,使它与已知三角形的三边都相切? (1) 如果半径为r的I与ABC的三边都相切,那么圆心I应满足什么条件?(2) 在ABC的内部,如何找到满足条件的圆心I呢? 圆心I到三角形三边的距离相等,都等于r.三角形三条角平分线交于一点,这一点与三角形的三边距离相等.圆心I应是三角形的三条角平分线的交点.为什么呢?已知:ABC.求作:和ABC的各边都相切的圆.ABCOMND作法:1.作B和C的平分线BM和CN,交点为O.

8、2.过点O作ODBC.垂足为D.3.以O为圆心,OD为半径作圆O.O就是所求的圆.做一做做一做1.与三角形三边都相切的圆叫作三角形的内切圆.2.三角形内切圆的圆心叫做这个三角形的内心.3.这个三角形叫做这个圆的外切三角形.BACI I是ABC的内切圆,点I是ABC的内心,ABC是I的外切三角形.知识要点知识要点三角形的内心的性质BACI问题1 如图,I是ABC的内切圆,那么线段OA,OB ,OC有什么特点?线段OA,OB ,OC 分别是A,B,C的平分线.问题探究问题探究BACI问题2 如图,分别过点作AB、AC、BC的垂线,垂足分别为E、F,G,那么线段IE、IF、IG之间有什么关系?EFG

9、IE=IF=IGu三角形内心的性质三角形内心的性质三角形的内心在三角形的角平分线上.三角形的内心到三角形的三边距离相等.BACIEFG IA,IB,IC是ABC的角平分线,IE=IF=IG.知识要点知识要点例3 如图,ABC中, B=43,C=61 ,点I是ABC的内心,求 BIC的度数.解:连接IB,IC.ABCI点I是ABC的内心,IB,IC分别是 B,C的平分线,在IBC中,180()BICIBCICB 1180()2BC 1180(4361 )2128 .典例精析典例精析例4 如图,一个木模的上部是圆柱,下部是底面为等边三角形的直三棱柱. 圆柱的下底面圆是直三棱柱上底面等边三角形的内切

10、圆,已知直三棱柱的底面等边三角形的边长为3cm,求圆柱底面圆的半径.该木模可以抽象为几何如下几何图形.CABrOD解: 如图,设圆O切AB于点D,连接OA、OB、OD.圆O是ABC的内切圆,AO、BO是BAC、ABC的角平分线 ABC是等边三角形, OAB=OBA=30oODAB,AB=3cm,AD=BD= AB=1.5(cm)12OD=AD tan30o= (cm)32答:圆柱底面圆的半径为 cm.32例5 ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.想一想:图中你能找出哪些相等的线段?理由是什么?BACE

11、DFO解: 设AF=xcm,则AE=xcm.CE=CD=AC-AE=9-x(cm), BF=BD=AB-AF=13-x(cm).由 BD+CD=BC,可得 (13-x)+(9-x)=14, AF=4(cm),BD=9(cm),CE=5(cm).方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.解得 x=4.ACEDFO名称确定方法图形性质外心:三角形外接圆的圆心内心:三角形内切圆的圆心三角形三边中垂线的交点1.OA=OB=OC2.外心不一定在三角形的内部三角形三条角平分线的交点1.到三边的距离相等;2.OA、OB、OC分别平分BAC、ABC、ACB3.内心在三角形

12、内部ABOABCO比一比比一比1.求边长为6 cm的等边三角形的内切圆半径与外接圆半径.解:如图,由题意可知BC=6cm,ABC=60,ODBC,OB平分ABC.OBD=30,BD=3cm,OBD为直角三角形.tan303cm.ODBD2 3cm.cos30BDBD 内切圆半径外接圆半径练一练练一练变式:求边长为a的等边三角形的内切圆半径r与外接圆半径R的比.sinOBD sin30 rR ODOB .12ABCOcDEr2.如图,直角三角形的两直角边分别是a、b,斜边为c,则其内切圆的半径r为_(以含a、b、c的代数式表示r).2abcr解析:过点O分别作AC,BC,AB的垂线,垂足分别为D

13、,E,F.F则AD=AC-DC=b-r,BF=BC-CE=a-r,因为AF=AD,BF=BE,AF+BF=c,所以a-r+b-r=c,所以.2abcr2.如图,已知点O是ABC 的内心,且ABC= 60 , ACB= 80 ,则BOC= . 1.如图,PA、PB是O的两条切线,切点分别是A、B,如果AP=4, APB= 40 ,则APO= ,PB= . P第1题第2题20 4110 当堂练习当堂练习(3)若BIC=100 ,则A = 度.(2)若A=80 ,则BIC = 度.130203.如图,在ABC中,点I是内心, (1)若ABC=50, ACB=70,BIC=_.ABCI(4)试探索:

14、A与BIC之间存在怎样的数量关系?120190.2BICA4.如图所示,已知在ABC中,B90,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DEOC.证明:连接OD,AC切O点D,ODAC,ODC=B=90.在RtOCD和RtOCB中, ODOB ,OCOC RtODCRtOBC(HL),DOC=BOC.OD=OE,ODE=OED,DOB=ODE+OED,BOC=OED,DEOC方法二:证明:连接BD,AC切O于点D,AC切O于点B,DC=BC,OC平分DCB.OCBD.BE为O的直径,DEBD.DEOC5.如图,ABC中,I是内心,A的平分线和ABC的外接圆相交于点D.求证:DIDB.证明:连接BI.I是ABC的内心,BAD=CAD,ABI=CBI,CBD=CAD,BAD=CBD,BID=BAD+ABI,IBD=CBI+CBD,BID=IBD,BD=ID切线长切 线 长定理作 用图形的轴对称性原 理提供了证线段和角相等的新方法辅助线 分别连接圆心和切点; 连接两切点; 连接圆心和圆外一点.三角形内切圆运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.有关概念内心概念及性质应 用课堂小结课堂小结

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁