《综合指标分析.ppt》由会员分享,可在线阅读,更多相关《综合指标分析.ppt(186页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、河北大学统计学系河北大学统计学系第4章复习和扫尾l建立变量la=c(20,23,20,24,23,21,22,25,26,20,21,21,22,22,23,22,22,24,25,21,22,21,24,23)l分布表ltable(a)l直方图l把zhengli.csv复制到我的文档la=read.csv(zhengli.csv);attach(a);hist(lingjian)1河北大学统计学系河北大学统计学系直方图的修饰l自选分割点lhist(lingjian,breaks=c(105,115,125,140)l为图着色lhist(lingjian,breaks=c(105,115,12
2、5,140),col=blue)l为轴标签着色lhist(lingjian,breaks=c(105,115,125,140),col.lab=green)l为轴刻度值着色lhist(lingjian,breaks=c(105,115,125,140),col.axis=blue)l为标题着色lhist(lingjian,breaks=c(105,115,125,140),col.main=blue)2河北大学统计学系河北大学统计学系茎叶图、箱图l茎叶图lstem(lingjian)l箱图lboxplot(lingjian)3河北大学统计学系河北大学统计学系对称分布对称分布对称分布右偏分布右偏
3、分布右偏分布左偏分布左偏分布左偏分布正正正J J J型分布型分布型分布反反反J J J型分布型分布型分布U UU型分布型分布型分布五、次数分布类型4河北大学统计学系第五章 综合指标分析5 河北大学统计学系河北大学统计学系学习目标l总量指标的特点、种类和局限性l各种相对指标的特点、作用及计算方法l各种平均指标的计算与应用l各种标志变异度指标的计算与应用 6河北大学统计学系河北大学统计学系主要内容第一节 总量指标分析第二节 相对指标分析第三节 平均指标分析第四节 变异度指标分析第五节 偏度和峰度指标分析进入进入进入进入进入进入进入进入进入进入7河北大学统计学系河北大学统计学系第一节 总量指标分析一
4、、总量指标的概念和特点二、总量指标的种类三、总量指标的计量单位四、国民经济分析中的几个主要总量指标五、总量指标的作用和局限性8河北大学统计学系河北大学统计学系 总量指标是反映社会经济现象总规模、总水平和工作总量的统计指标。也称绝对数指标,简称绝对数。一、总量指标的概念和特点总量指标的概念总量指标的特点最基本的综合指标;统计整理阶段的直接成果;数字形式为绝对数,数值大小与总体范围大小直接相关。表现形式:总量的绝对数;总量间的差数或和数(减少额或增加额)9河北大学统计学系河北大学统计学系二、总量指标的种类总体单位总量按其反映内容不同划分总体标志总量总体内所有单位个数的总和总体内各单位某一数量标志的
5、标志值之和一个总体中只有一个总体单位总量,但可以有多个标志总量,它们由总体单位的数量标志值汇总而来。举举 例例10河北大学统计学系河北大学统计学系学生的数量标志:学生的数量标志:年龄、身高、体重、年龄、身高、体重、考试分数、生活费考试分数、生活费支出等等支出等等则学生总体的标志则学生总体的标志总量:?总量:?总体单位总量为总体单位总量为?以某一班级为总体以某一班级为总体某班学生总年龄、总身高、总体重、考试总分数、生活费总支出等等11河北大学统计学系河北大学统计学系时期指标时点指标反映某种社会经济现象在一段时期内的活动过程中所取得或实现的累计总量。反映社会经济现象在某一时点上所实现或达到的总量指
6、标。按其反映时间状况不同划分时期指标时点指标数值具有可加性数值不具有可加性数值大小与时间长短有直接关系数值大小与其时间间隔长短无直接关系通过连续登记取得,是累计量采用间断登记取得,是时点量举举 例例12河北大学统计学系河北大学统计学系出生人数出生人数人口总数人口总数死亡人数死亡人数t1时段时段t2时段时段t3时段时段t关于一个人口总体的总量指标关于一个人口总体的总量指标时时期期指指标标时时点点指指标标13河北大学统计学系河北大学统计学系三、总量指标的计量单位自然单位度量衡单位复合单位标准实物单位按对象的自然状况来度量数量的单位按统一度量衡制度的规定来度量数量的单位两种计量单位结合使用按统一折算
7、的标准来度量数量的单位实物单位价值单位劳动单位以货币单位计量的统计指标以劳动单位即工日、工时等劳动时间计量的统计指标14河北大学统计学系河北大学统计学系四、国民经济分析中的几个主要总量指标l社会总产品:以货币单位表现的一个国家或地区在一定时期内全部生产活动的总成果。l增加值:企事业或部门在一定时期内从事一定生产经营活动所取得的最终成果。l国内生产总值(GDP):一个国家所有常住单位在一定时期内生产的最终成果之和。l国内生产净值:一国或地区在一定时期新创造的全部价值=GDP-固定资产折旧15河北大学统计学系河北大学统计学系五、总量指标的作用和局限性q是认识社会经济现象的起点;q是计算其他统计指标
8、的基础。作用局限性不同规模总体进行对比时,总量指标往往缺乏可比性。16河北大学统计学系河北大学统计学系第二节 相对指标分析一、相对指标的概念及作用二、相对指标的表现形式三、相对指标的种类及计算方法17河北大学统计学系河北大学统计学系又称相对数,是两个性质相同或互有联系的指标数值之比,即用对比方法来反映相关事物之间数量联系程度的指标。相对指标q用来反映总体现象的各种数量对比关系,以深入认识社会经济现象的不同数量特征。q使不能直接对比的现象找到共同的比较基础;相对指标的作用:一、相对指标的概念和作用对比的基础:对比的基础:对比双方为同类事物,对比双方为同类事物,性质、形态、计量单性质、形态、计量单
9、位相同位相同或互有联系或互有联系 人口数和人口数和区域面积区域面积对比的计对比的计算方法:算方法:相除计算相除计算举举 例例18河北大学统计学系河北大学统计学系 总人数总人数30人人男生人数男生人数20人人女生人数女生人数10人人男生比重为男生比重为2/3女生比重为女生比重为1/3男女比例为男女比例为2:1总总量量指指标标相相对对指指标标19河北大学统计学系河北大学统计学系甲企业甲企业乙企业乙企业利润利润总额总额资金资金占用占用资金利资金利润率润率500万元万元 5000万元万元 3000万元万元40000万元万元16.7%12.5%当比较两厂当比较两厂经济效益时经济效益时不可比不可比不可比不
10、可比可比可比20河北大学统计学系河北大学统计学系无名数有名数用倍数、系数、成数、等表示用双重计量单位表示的复名数,如人/平方公里成数应当用整数的形式来表述3成、近7成8.6成 分母为1,对比数值1时.分母为1,对比数值1时.分母为10,一成是1/10分母为100分母为1000二、相对指标的表现形式21河北大学统计学系河北大学统计学系2、结构相对指标3、比例相对指标4、比较相对指标1、计划完成程度相对指标6、强度相对指标5、动态相对指标三、相对指标的种类22河北大学统计学系河北大学统计学系l概念:又称计划完成相对数,是现象在某一段时间内的实际完成数与计划数之比,表明计划的完成程度,一般用百分数表
11、示,故又称计划完成百分比。l作用:检查、监督计划执行情况。1、计划完成程度相对指标分子分母在分子分母在指标涵义、指标涵义、计算口径、计算口径、计算方法、计算方法、计量单位及计量单位及时间长短和时间长短和空间范围要空间范围要一致一致=23河北大学统计学系河北大学统计学系例如:某企业2004年产品产量计划为1500吨,实际生产2000吨,则:该企业超额33%完成了预期目标,实际比计划多生产了500吨。24河北大学统计学系河北大学统计学系l 由于计划完成数的表现形式不同,计划完成情况相对指标在形式上也各有所异。计划完成数为绝对数计划完成数为相对数计划完成数为平均数指标根据下达计划任务时期的长短和计划
12、任务数值的表现形式不同,而有多种计算方法,实际应用时需注意区别。25河北大学统计学系河北大学统计学系例:某企业2004年工业增加值计划为4000万元,实际完成4200万元。绝对数短期计划A.A.计划完成数表现为绝对数时计划完成数表现为绝对数时一般用于考核社会一般用于考核社会经济现象总规模、经济现象总规模、总水平或工作总量总水平或工作总量的计划完成情况,的计划完成情况,如工业增加值。如工业增加值。26河北大学统计学系河北大学统计学系例:某企业2005年5月某产品的单位成本计划为50元,实际实现的单位成本为45元。平均数B.B.计划完成数表现为平均数时计划完成数表现为平均数时一般用于考核用平一般用
13、于考核用平均水平表示的技术均水平表示的技术经济指标的计划完经济指标的计划完成情况,如单位成成情况,如单位成本。本。27河北大学统计学系河北大学统计学系例:己知某厂2005年的计划要求年劳动生产率达到50000元/人,产品单位成本为100元/件;而实际年劳动生产率达到55000元/人,产品单位成本为90元/件。则28河北大学统计学系河北大学统计学系例:某企业2005年第一季度计划商品流通费用率为3%,实际商品流通费用率为3.4%。相对数C.C.计划完成数表现为相对数时计划完成数表现为相对数时(C1C1)计划完成数是要完成的百分比)计划完成数是要完成的百分比29河北大学统计学系河北大学统计学系(C
14、2C2)计划完成数规定的是降低率或提高率)计划完成数规定的是降低率或提高率例:己知某厂2005年的计划规定产品产值提高5,单位成本计划降低5%;而实际产品产值提高了7,单位成本降低了3%。则产值计划超额完成1.9%成本计划少完成2.1%30河北大学统计学系河北大学统计学系 长期计划(如五年计划)由于计划中所规定的指标性质不同,其表示方法也不同。一种是水平表示法,一种是累计表示法。因此,产生了长期计划执行情况检查的水平法和累计法。期末水平应达到某水平 水平法 计划期内累计量应达到某水平累计法长期计划31河北大学统计学系河北大学统计学系如果计划任务规定的是计划期最末一年应达到的水平,检查该计划完成
15、情况用水平法。水平法32河北大学统计学系河北大学统计学系例:某自行车厂计划“九五”末期达到年产自行车120万辆的产量,实际完成情况为:年份19961997199819992000产量(万辆)108114117119123其中,最后两年各月份实际产量为(单位:万辆):要求计算:该厂“九五”期间产量计划的完成程度;提前完成计划的时间。月份月份1234567891011121999年年9.69.69.89.89.99.910.010.010.110.110.110.12000年年10.110.110.210.210.210.210.210.310.310.410.410.4+0.5+0.5+0.5+
16、0.5=120=12033河北大学统计学系河北大学统计学系提前完成计划时间:因为自1999年3月起至2000年2月底连续12个月的时间内该厂自行车的实际产量已达到120万辆119+10.19.6+(10.19.6)=120,即已完成计划任务,提前完成计划10个月。34河北大学统计学系河北大学统计学系如果计划任务规定的是整个计划期内累计达到的水平,检查该计划完成情况用累计法。累计法35河北大学统计学系河北大学统计学系例:某市计划“九五”期间要完成社会固定资产投资总额60亿元,计划任务的实际完成情况为:年份19961997199819992000合计投资额(亿元)11.411.912.512.81
17、3.161.7其中,2000年各月份实际完成情况为(单位:亿元):月份月份1 12 23 34 45 56 67 78 89 9101011111212投资额投资额1.11.11.01.01.21.21.11.11.11.11.11.11.21.21.21.21.31.31.11.10.90.90.80.8要求计算:该市“九五”期间固定资产投资计划的完成程度;提前完成计划的时间。已累计完成固定资产投资额已累计完成固定资产投资额已累计完成固定资产投资额已累计完成固定资产投资额60606060亿元亿元亿元亿元36河北大学统计学系河北大学统计学系提前完成计划时间:因为到2000年10月底已完成固定资
18、产累计投资额60亿元(61.70.80.9=60),即已完成计划任务,提前完成计划两个月。37河北大学统计学系河北大学统计学系 结构相对指标是在对总体分组的基础上,以总体总量作为比较标准,求出各组总量占总体总量的比重,来反映总体内部组成情况的综合指标。如男女生各自所占比重;男性人口比重;如男女生各自所占比重;男性人口比重;成绩优秀率;优等品比重;成绩优秀率;优等品比重;第三产业产值占总产值比重;第三产业产值占总产值比重;恩格尔系数;基尼系数恩格尔系数;基尼系数2、结构相对指标38河北大学统计学系河北大学统计学系例:我国某年国民收入使用额为19715亿元,其中消费额为12945亿元,积累额为67
19、70亿元。则说明为无名数;同一总体各组的结构相对数之和为1;用来分析现象总体的内部构成状况。39河北大学统计学系河北大学统计学系l能够反映总体单位数的结构和总体标志值的结构,深刻认识事物各个部分的特殊性质及其在总体中所占的地位。l事物的变化总是开始于内部结构的演变。这种演变反映着事物发展变化的过程,掌握这一过程就能了解事物发展的趋势和规律。结构相对指标的作用40河北大学统计学系河北大学统计学系又称比例相对数,是同一总体中不同部分数量对比的相对指标,反映总体中各部分之间数量联系程度、比例关系及协调平衡状况。3、比例相对指标如人口性别比例;积累与消费比例;如人口性别比例;积累与消费比例;一二三产业
20、比例一二三产业比例41河北大学统计学系河北大学统计学系例:我国某年国民收入使用额为19715亿元,其中消费额为12945亿元,积累额为6770亿元。则说明为无名数,可用百分数或一比几或几比几表示;用来反映组与组之间的联系程度或比例关系。42河北大学统计学系河北大学统计学系 又称比较相对数,是同一时间不同空间同类指标对比而得的相对数。用以表明同类事物在不同条件下的数量对比关系和差异程度。4、比较相对指标3、比较相对指标如中国人口预期寿命与世界人口平均如中国人口预期寿命与世界人口平均预期寿命的比较预期寿命的比较中国第三产业产值比重与美国第三产中国第三产业产值比重与美国第三产业比重的比较业比重的比较
21、43河北大学统计学系河北大学统计学系例:某年某地区甲、乙两个公司商品销售额分别为5.4亿元和3.6亿元。则为无名数,一般用倍数、系数表示用来说明现象发展的不均衡程度。说明44河北大学统计学系河北大学统计学系l子项与母项的内容不同结构相对指标是部分数量与总体总量的对比比例相对指标是同一总体内,部分数量与部分数量的对比比较相对指标是同一时间同类指标在空间上的对比l说明问题不同结构相对指标用各组总量占总体总量的比重,来反映总体内部组成情况的;比例相对指标说明总体内各部分间的相互关系;比较相对指标说明某种现象在不同空间下发展的不均衡程度。结构相对指标、比例相对指标和比较相对指标的区别45河北大学统计学
22、系河北大学统计学系l又称动态相对数或发展速度,是同类现象指标值在不同时间上的对比,用以表明现象在不同时间上的发展变化程度。5、动态相对指标46河北大学统计学系河北大学统计学系为无名数;用来反映现象的数量在时间上的变动程度。说明例:我国钢产量2003年为22234万吨,2002年为18237万吨。47河北大学统计学系河北大学统计学系 又称强度相对数,是两个相关的、性质不同的总量指标之比,用以表明现象的强度、密度和普遍程度。6、强度相对指标48河北大学统计学系河北大学统计学系例:某年某地区年平均人口数为例:某年某地区年平均人口数为100100万人,在该年度内出万人,在该年度内出生的人口数为生的人口
23、数为86008600人。则该地区人。则该地区一般用、表示。其特点是分子来源于分母,但分母并不是分子的总体,二者所反映现象数量的时间状况不同。无名数的强度相对数49河北大学统计学系河北大学统计学系例:某地区某年末现有总人口为100万人,医院床位总数为24700张。则该地区(正指标)(逆指标)用双重计量单位表示的复名数,反映的是一种依存性的比例关系或协调关系,用来反映经济效益、经济实力、现象的密集程度等。有名数的强度相对数50河北大学统计学系河北大学统计学系q保持对比指标的可比性保持对比指标的可比性q相对指标与绝对数指标结合运用相对指标与绝对数指标结合运用q用于数值较大现象的分析用于数值较大现象的
24、分析q各种相对指标结合运用各种相对指标结合运用q相对指标基数不同不能直接相加相对指标基数不同不能直接相加使用相对指标应注意的问题使用相对指标应注意的问题51河北大学统计学系河北大学统计学系本单位历史水平本行业(全国)平均(先进)水平经济效益指数某经济效益指标实际值该经济效益指标标准值定基价格指数某期价格水平某固定基期的价格水平经济发展、价格水平均较为正常的时期1、正确选择对比基础52河北大学统计学系河北大学统计学系2000年的工业总产值(当年价格)1980年的工业总产值(当年价格)2、注意指标间的可比性1980年中国的国民收入(人民币元)1980年美国的国民收入(美元)53河北大学统计学系河北
25、大学统计学系相对指标抽象掉了具体的数量差异:1:2=50%10000:20000=50%1998年相对于1997年,美国的GDP增长速度为3.9,同期中国GDP增长速度为7.8,恰好为美国的2倍;但根据同期汇率(1美元兑换8.3元人民币),1998年中国GDP总量约合9671亿美元,约相当于同期美国GDP总量84272亿美元的1/9。3、相对指标应当结合总量指标使用54河北大学统计学系河北大学统计学系结构相对数比例相对数比较相对数动态相对数计划完成相对数强度相对数(部分与总体关系)(部分与总体关系)(部分与部分关系)(部分与部分关系)(横向对比关系)(横向对比关系)(纵向对比关系)(纵向对比关
26、系)(实际与计划关系)(实际与计划关系)(关联指标间关系)(关联指标间关系)4、多种相对指标应当结合运用55河北大学统计学系河北大学统计学系人口性别比为1.03:11999年末我国共有总人口12.6亿人,其中男性人口为6.4亿,女性人口为6.2亿。男性人口的比重为50.8比1980年末的9.9亿人增加了28人口密度是美国的4.5倍人口密度为130人/平方公里人口出生率为15.23女性人口的比重为49.256河北大学统计学系河北大学统计学系l某年级有两个班:l1班及格率:96%l2班及格率:90%l年级及格率=(96%+90%)/2l如何求?基数不基数不同同5、相对指标不能直接相加57河北大学统
27、计学系河北大学统计学系第三节 平均指标分析一、平均指标的概念和特点二、平均指标的作用和种类三、算术平均数四、调和平均数五、几何平均数六、众数七、中位数八、平均数之间的相互关系九、应用平均指标应注意的问题58河北大学统计学系河北大学统计学系 一、平均指标的概念和特点把总体各单位标志值的差异抽象化了平均指标是个代表值,代表总体各单位标志值的一般水平特征又称平均数,是指用来反映总体各单位某一数量标志在一定时间、地点、条件下一般水平的综合指标。反映统计分布集中趋势或中心位置的特征值反映统计分布集中趋势或中心位置的特征值截长截长补短补短59河北大学统计学系河北大学统计学系二、平均指标的作用比较分析的作用
28、可作为论断事物的一种数量标准或参考可分析现象间的依存关系可进行数量上的推算和估计不同空间或不同时间的对比,如平均成绩如按企业规模分组,计算各组平均商品流通费用率。可反映企业规模与流通费用率间的依存关系60河北大学统计学系河北大学统计学系三、平均指标的种类数值平均数位置平均数众数中位数算术平均数调和平均数几何平均数静态平均数动态平均数61河北大学统计学系河北大学统计学系基本形式基本形式直接承担者1、算术平均数 以上公式中,分子与分母在经济内容上有着从属关系,以上公式中,分子与分母在经济内容上有着从属关系,即即分子数值是个分母单位特征的总和,两者在总体范围上是分子数值是个分母单位特征的总和,两者在
29、总体范围上是一致的,一致的,这也是平均指标与强度相对指标的区别所在。强度这也是平均指标与强度相对指标的区别所在。强度相对指标也是两个有联系的总量指标之比,但不存在各标志相对指标也是两个有联系的总量指标之比,但不存在各标志值与各单位的对应问题。值与各单位的对应问题。62河北大学统计学系河北大学统计学系l指标的含义不同。强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是现象发展的一般水平。l计算方法不同。强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系;而平均指标是在一个同质总体内标志总量与单位总
30、量的对比。分子是各单位标志值的总和,分母是单位总数,对比结果是反映总体各单位某一标志值的平均数。强度相对指标与平均指标的区别63河北大学统计学系河北大学统计学系例如:以此标准衡量,全国粮食产量与全国种粮农民人数之比,计算得出农业劳动生产率,是个平均指标;而全国粮食产量与全国人口数之比,计算得出全国平均每人拥有的粮食产量,是个强度指标。因为,全国每一个种粮的农民都具有粮食产量这一标志。而全国人口中,却有很多人不具有这个标志。64河北大学统计学系河北大学统计学系算术平均数的两种计算形式 简单算术平均数 加权算术平均数65河北大学统计学系河北大学统计学系适用于总体资料未经分组整理、尚为原始资料的情况
31、式中:为算术平均数;为总体单位总数;为第 个单位的标志值。A.简单算术平均数A.简单算术平均数66河北大学统计学系河北大学统计学系平均每人日销售额为:某售货小组5个人,某天的销售额分别为520元、600元、480元、750元、440元,则【例】67河北大学统计学系河北大学统计学系R操作x=c(520,600,480,750,440)mean(x)68河北大学统计学系河北大学统计学系适用于总体资料经过分组整理形成变量数列的情况公式1B.加权算术平均数式中:为算术平均数;为第 组的次数;为组数;为第 组的标志值或组中值。69河北大学统计学系河北大学统计学系式中:为算术平均数;为第 组的频率;为组数
32、;为第 组的标志值或组中值。公式270河北大学统计学系河北大学统计学系 身高身高 组中值组中值 人数人数 比比重重 (cm)(cm)(人)(人)(%)150-155 152.5 3 3.61 155-160 157.5 11 13.25 160-165 162.5 34 40.96 165-170 167.5 24 28.92 170以上以上 172.5 11 13.25 总计总计 83 100某年级某年级83名女生身高资料名女生身高资料组距数列次数次数f频率频率f/f变量值变量值x加权算术平均数71河北大学统计学系河北大学统计学系R操作x=c(152.5,157.5,162.5,167.5,
33、172.5)wt=c(3,11,34,24,11)weighted.mean(x,wt)72河北大学统计学系河北大学统计学系234567819234567819权数与加权权数与加权73河北大学统计学系河北大学统计学系权数与加权权数与加权23456781974河北大学统计学系河北大学统计学系权数与加权权数与加权23456781975河北大学统计学系河北大学统计学系权数与加权权数与加权23456781976河北大学统计学系河北大学统计学系权数与加权权数与加权234567819算术平均数的计算取决于变量值和算术平均数的计算取决于变量值和权数的共同作用:权数的共同作用:变量值决定平均数的范围;变量值决
34、定平均数的范围;权数则决定平均数的位置权数则决定平均数的位置77河北大学统计学系河北大学统计学系权数的选择l一般情况下,各组的频数、频率就是权数,但在计算相对数的算术平均数时不适用。l以计算计划完成指数的平均数为例78河北大学统计学系河北大学统计学系某市所属15个企业产值计划完成情况如下:计划完成计划完成程度程度%90-100100-110110-120合计合计组中值组中值%x95105115企业数企业数58215计划完成数计划完成数(万元)(万元)f1008001001000实际完成数实际完成数(万元)(万元)xf958401151050由于各企业规模不同,不能使用企业数为权数,而选用产值为
35、由于各企业规模不同,不能使用企业数为权数,而选用产值为权数,且选用计划产值为权数,为什么?权数,且选用计划产值为权数,为什么?79河北大学统计学系河北大学统计学系总结,相对数求算术平均数用相对数的总结,相对数求算术平均数用相对数的分母分母做权数做权数80河北大学统计学系河北大学统计学系l权数:加权算术平均数中的权数,是标志值出现的次数(频数)f 或各组次数占总次数的比重(频率)。l权数的作用:权衡平均数大小。l某一组的次数或频率越大,则该组的标志值对平均数的影响就越大,反之越小。权数及作用81河北大学统计学系河北大学统计学系 受单位标志值大小的影响。受各标志值次数的影响,更准确的讲是受个组次数
36、占总次数比重即频率的影响。加权算术平均数的影响因素82河北大学统计学系河北大学统计学系算术平均数的数学性质l各个变量值与平均数的离差之和等于零l各个变量值与算术平均数的离差最小83河北大学统计学系河北大学统计学系12345678-1-1-213离差的概念离差的概念84河北大学统计学系河北大学统计学系算术平均数的数学性质l两独立同性质变量代数和(差)的平均数等于各变量平均数的代数和(差)l两独立同性质变量乘积的平均数等于各变量平均数的乘积85河北大学统计学系河北大学统计学系【例】设X=(2,4,6,8),则其调和平均数可由定义计算如下:再求算术平均数:求各标志值的倒数:,再求倒数:是总体各单位标
37、志值倒数的算术平均数的倒数,又叫倒数平均数2、调和平均数86河北大学统计学系河北大学统计学系适用于总体资料未经分组整理、尚为原始资料的情况H为调和平均数;m 为变量值i 的个数;Xi为第i个变量值。A.简单调和平均数87河北大学统计学系河北大学统计学系 市场上某种蔬菜早市价格每斤0.25元,午市价格每斤0.2元,晚市每斤0.1元,如早中晚各买1元的菜,则平均每斤价格是多少:购买总金额购买总数量举例88河北大学统计学系河北大学统计学系适用于总体资料经过分组整理形成变量数列的情况式中:为第 组的变量值;为第 组的标志总量。B.加权调和平均数89河北大学统计学系河北大学统计学系公式公式加权调加权调和
38、平均和平均数数如果如果变形为加权算术平加权算术平均数均数90河北大学统计学系河北大学统计学系l可见:若调和平均数以各组的标志总量(m)为权数时,它就是算术平均数的变形公式,实际应用是选用那种方法要看掌握的资料情况而定。91河北大学统计学系河北大学统计学系已知 用基本平均数公式己知 采用加权算术平均数公式己知 ,采用加权调和平均数公式平均数形式选择92河北大学统计学系河北大学统计学系STATSTAT 苹果苹果 单价单价 购买量购买量 总金额总金额 品种品种 (元)(公斤)(元)(公斤)(元)(元)红富士红富士 2 3 6青香蕉青香蕉 1.8 5 9 例1若只知若只知 x 和和xf,f 未未知,则
39、只能使知,则只能使用加权调和平均用加权调和平均若已知若已知 x 和和f,则使用加则使用加权算术平均权算术平均式式93河北大学统计学系河北大学统计学系日产量(件)各组工人日总产量(件)10111213147001100456019501400合计9710某企业某日工人的日产量资料如下:计算该企业该日全部工人的平均日产量。例2即该企业该日全部工人的平均日产量为12.1375件。94河北大学统计学系河北大学统计学系应采用加权算术平均数公式计算计划完成程度(%)组中值(%)企业数(个)计划产值(万元)90以下90100100110110以上8595105115231038002500172004400
40、合计1824900计算该公司该季度的平均计划完成程度。分析:某季度某工业公司18个工业企业产值计划完成情况如下:例395河北大学统计学系河北大学统计学系某季度某工业公司18个工业企业产值计划完成情况如下(按计划完成程度分组):组别企业数(个)计划产值(万元)实际产值(万元)12342310380025001720044006802375180605060合计182490026175计算该公司该季度的平均计划完成程度。分析:应采用平均数的基本公式计算例496河北大学统计学系河北大学统计学系某季度某工业公司18个工业企业产值计划完成情况如下:计划完成程度(%)组中值(%)企业数(个)实际产值 (万
41、元)90以下90100100110110以上8595105115231036802375180605060合计1826175计算该公司该季度的平均计划完成程度。分析:应采用调和算术平均数公式计算例597河北大学统计学系河北大学统计学系是N项变量值连乘积的开n次方根用于计算现象的平均比率或平均速度q各个比率或速度的连乘积等于总比率或总速度;q相乘的各个比率或速度不为零或负值。应用的前提条件:3、几何平均数98河北大学统计学系河北大学统计学系适用于总体资料未经分组整理尚为原始资料的情况式中:为几何平均数;为变量值的个数;为第 个变量值。A.简单几何平均数99河北大学统计学系河北大学统计学系【例】某
42、流水生产线有前后衔接的五道工序。某日各工序产品的合格率分别为95、92、90、85、80,求整个流水生产线产品的平均合格率。设最初投产100个单位,则第一道工序的合格品为1000.95;第二道工序的合格品为(1000.95)0.92;第五道工序的合格品为 1000.950.920.900.850.80;A.简单几何平均数100河北大学统计学系河北大学统计学系因该流水线的最终合格品即为第五道工序的合格品,故该流水线总的合格品应为 1000.950.920.900.850.80;则该流水线产品总的合格率为:即该流水线总的合格率等于各工序合格率的连乘积,符合几何平均数的适用条件,故需采用几何平均法计
43、算。101河北大学统计学系河北大学统计学系R操作把g.R复制到“我的文档”source(g.R)x=c(7,8,9)g(x)102河北大学统计学系河北大学统计学系思考:若上题中不是由五道连续作业的工序组成的流水生产线,而是五个独立作业的车间,且各车间的合格率同前,又假定各车间的产量相等均为100件,求该企业的平均合格率。因各车间彼此独立作业,所以有 第一车间的合格品为:1000.95;第二车间的合格品为:1000.92;第五车间的合格品为:1000.80。则该企业全部合格品应为各车间合格品的总和,即总合格品=1000.95+1000.80103河北大学统计学系河北大学统计学系又因为应采用加权算
44、术平均数公式计算,即 不再符合几何平均数的适用条件,需按照求解比值的平均数的方法计算。104河北大学统计学系河北大学统计学系适用于总体资料经过分组整理形成变量数列的情况式中:为几何平均数;为第 组的次数;为组数;为第 组的标志值或组中值。B.加权几何平均数105河北大学统计学系河北大学统计学系【例】某金融机构以复利计息。近12年来的年利率有4年为3,2年为5,2年为8,3年为10,1年为15。求平均年利率。设本金为V,则至各年末的本利和应为:第1年末的本利和为:第12年的计息基础第2年的计息基础第2年末的本利和为:第12年末的本利和为:B.加权几何平均数106河北大学统计学系河北大学统计学系则
45、该笔本金12年总的本利率为:即12年总本利率等于各年本利率的连乘积,符合几何平均数的适用条件,故计算平均年本利率应采用几何平均法。B.加权几何平均数107河北大学统计学系河北大学统计学系R操作把weighted.g.R复制到“我的文档”source(weighted.g.R)x=c(7,8,9)wt=c(2,4,3)weighted.g(x,wt)108河北大学统计学系河北大学统计学系若上题中不是按复利而是按单利计息,且各年的利率与上相同,求平均年利率。第1年末的应得利息为:第2年末的应得利息为:第12年末的应得利息为:设本金为V,则各年末应得利息为:B.加权几何平均数则该笔本金12年应得的利
46、息总和为:=V(0.034+0.052+0.151)109河北大学统计学系河北大学统计学系这里的利息率或本利率不再符合几何平均数的适用条件,需按照求解比值的平均数的方法计算。因为假定本金为V所以,应采用加权算术平均数公式计算平均年利息率,即:110河北大学统计学系河北大学统计学系几何平均数的应用特点l它适用于反映特定现象的平均水平,即变量的总水平不是各变量值的总和而是连乘积。l如果数列中有一个标志值等于0或为负值。则无法计算几何平均数111河北大学统计学系河北大学统计学系指总体中出现次数最多的变量值,用 表示,它不受极端数值的影响,用来说明总体中大多数单位所达到的一般水平。比如在服装行业中,生
47、产商、批发商和零售商在做有关生产或存货的决策时,更感兴趣的是最普遍的尺寸而不是平均尺寸。此时众数合适的代表值4、众数112河北大学统计学系河北大学统计学系日产量(件)工人人数(人)101112131470100380150100合计800【例A】已知某企业某日工人的日产量资料如下:计算该企业该日全部工人日产量的众数。众数确定单项数列113河北大学统计学系河北大学统计学系【例B】某车间50名工人月产量的资料如下:月产量(件)工人人数(人)向上累计次数(人)200以下200400400600600以上373283104250合计50计算该车间工人月产量的众数。众数确定组距数列114河北大学统计学系
48、河北大学统计学系q当数据分布存在明显的集中趋势,且有显著的极端值时,适合使用众数;q当数据分布的集中趋势不明显或存在两个以上分布中心时,不适合使用众数(前者无众数,后者为双众数或多众数,也等于没有众数)。众数的原理及应用115河北大学统计学系河北大学统计学系出生1981.01980.01979.01978.01977.01976.01975.0160140120100806040200413名学生出生时间分布直方图没有突出地集中在某个年份众数的原理及应用116河北大学统计学系河北大学统计学系192.5190.5188.5186.5184.5182.5180.5178.5176.5174.517
49、2.5170.5168.5166.5164.5162.5160.5158.5156.5154.5152.5150.5148.56050403020100413名学生的身高分布直方图出现了两个明显的分布中心众数的原理及应用117河北大学统计学系河北大学统计学系将总体各单位标志值按大小顺序排列后,指处于数列中间位置的标志值,用 表示不受极端数值的影响,在总体标志值差异很大时,具有较强的代表性。中位数的作用:如果统计资料中含有异常的或极端的数据,就有可能得到非典型的甚至可能产生误导的平均数,这时使用中位数来度量集中趋势比较合适。5、中位数118河北大学统计学系河北大学统计学系中位数的位次为:即第3个
50、单位的标志值就是中位数【例A】某售货小组5个人,某天的销售额按从小到大的顺序排列为440元、480元、520元、600元、750元,则中位数确定未分组资料119河北大学统计学系河北大学统计学系中位数的位次为:中位数应为第3和第4个单位标志值的算术平均数,即【例B】若上述售货小组为6个人,某天的销售额按从小到大的顺序排列为440元、480元、520元、600元、750元、760元,则中位数确定未分组资料120河北大学统计学系河北大学统计学系【例C】某企业某日工人的日产量资料如下:日产量(件)工人人数(人)向上累计次数(人)1011121314701003801501007017055070080