《离散型随机变量及其分布函数PPT参考课件.ppt》由会员分享,可在线阅读,更多相关《离散型随机变量及其分布函数PPT参考课件.ppt(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一一、离散型随机变量的分布函数离散型随机变量的分布函数二、几种常见的离散型随机变量二、几种常见的离散型随机变量三三、小结小结第第2.22.2节节 离散型随机变量离散型随机变量及其分布函数及其分布函数一、离散型随机变量的分布函数一、离散型随机变量的分布函数离散型离散型(1)离散型离散型 若随机变量所有可能的取值为有限个或若随机变量所有可能的取值为有限个或可列无穷个,则称其为离散型随机变量可列无穷个,则称其为离散型随机变量.观察掷一个骰子出现的点数观察掷一个骰子出现的点数.随机变量随机变量 X 的可能值是的可能值是:随机变量随机变量连续型连续型实例实例11,2,3,4,5,6.非离散型非离散型其它
2、其它实例实例2 若随机变量若随机变量 X 记为记为“连续射击连续射击,直至命直至命中时的射击次数中时的射击次数”,则则 X 的可能值是的可能值是:实例实例3 设某射手每次射击打中目标的概率是设某射手每次射击打中目标的概率是0.8,现该射手射了现该射手射了30次次,则随机变量则随机变量 X 记为记为“击中目标击中目标的次数的次数”,则则 X 的所有可能取值为的所有可能取值为:实例实例2 随机变量随机变量 X 为为“测量某零件尺寸时的测误差测量某零件尺寸时的测误差”.则则 X 的取值范围为的取值范围为 (a,b)内的任一值内的任一值.实例实例1 随机变量随机变量 X 为为“灯泡的寿命灯泡的寿命”.
3、(2)连续型连续型 若若随机变量所有可能的取值可以连续随机变量所有可能的取值可以连续地充满某个区间地充满某个区间,则称其为则称其为连续型随机变量连续型随机变量.则则 X 的取值范围为的取值范围为 说明说明 定义定义离散型随机变量的分布律也可表示为离散型随机变量的分布律也可表示为或或例例1 1 设一汽车在开往目的地的路上需经过四盏信号设一汽车在开往目的地的路上需经过四盏信号灯灯.每盏灯以每盏灯以 的概率禁止汽车通过的概率禁止汽车通过.以以 表示汽车首次停下时已经过的信号灯盏数(信表示汽车首次停下时已经过的信号灯盏数(信号灯的工作是相互独立的),求号灯的工作是相互独立的),求 的分布律的分布律.分
4、布函数分布律离散型随机变量的分布函数与其分布律之间的关系:离散型随机变量的分布函数与其分布律之间的关系:也就是:也就是:二、常见离散型随机变量的概率分布二、常见离散型随机变量的概率分布 设随机变量设随机变量 X 只取只取0与与1两个值两个值,它的分布律为它的分布律为1.两点分布两点分布则称则称 X 服从服从(0-1)分布分布或或两点分布两点分布或或伯努利分布伯努利分布.两点分布是最简单的一种分布两点分布是最简单的一种分布,任何一个只有任何一个只有两种可能结果的随机现象两种可能结果的随机现象,比如新生婴儿是男还是比如新生婴儿是男还是女、明天是否下雨、种籽是否发芽等女、明天是否下雨、种籽是否发芽等
5、,都属于两点都属于两点分布分布.说明说明2.二项分布二项分布若若X的分布律为:的分布律为:称随机变量称随机变量X X服从参数为服从参数为n,pn,p的的二项分布二项分布。记为。记为 ,其中其中q q1 1p p二项分布二项分布两点分布两点分布分析分析 这是不放回抽样这是不放回抽样.但由于这批元件的总数很但由于这批元件的总数很大大,且抽查元件的数量相对于元件的总数来说又很且抽查元件的数量相对于元件的总数来说又很小小,因而此抽样可近似当作放回抽样来处理因而此抽样可近似当作放回抽样来处理.例例2解解图示概率分布图示概率分布解解因此因此例例33.泊松分布泊松分布 泊松分布的背景及应用泊松分布的背景及应
6、用二十世纪初罗瑟福和盖克两位科学家在观察二十世纪初罗瑟福和盖克两位科学家在观察与分析放射性物质放射出的与分析放射性物质放射出的 粒子个数的情况时粒子个数的情况时,他们做了他们做了2608 2608 次观察次观察(每次时间为每次时间为7.5 7.5 秒秒),发现,发现放射性物质在规定的一段时间内放射性物质在规定的一段时间内,其放射的粒子其放射的粒子数数X 服从泊松分布服从泊松分布.地震地震 在生物学在生物学、医学医学、工业统计、保险科学及工业统计、保险科学及公用事业的排队等问题中公用事业的排队等问题中,泊松分布是常见的泊松分布是常见的.例如地震、火山爆发、特大洪水、交换台的电例如地震、火山爆发、
7、特大洪水、交换台的电话呼唤次数等都服从泊松分布话呼唤次数等都服从泊松分布.火山爆发火山爆发特大洪水特大洪水电话呼唤次数电话呼唤次数交通事故次数交通事故次数商场接待的顾客数商场接待的顾客数 在生物学在生物学、医学医学、工业统计、保险科学及工业统计、保险科学及公用事业的排队等问题中公用事业的排队等问题中,泊松分布是常见的泊松分布是常见的.例如地震、火山爆发、特大洪水、交换台的电例如地震、火山爆发、特大洪水、交换台的电话呼唤次数等话呼唤次数等,都服从泊松分布都服从泊松分布.泊松定理泊松定理证明证明二项分布二项分布 泊松分布泊松分布n很大很大,p 很小很小上面我们提到上面我们提到 :设:设1000 辆
8、车通过辆车通过,出事故的次出事故的次数为数为 X,则则可利用泊松定理计算可利用泊松定理计算所求概率为所求概率为解解例例4 有一繁忙的汽车站有一繁忙的汽车站,每天有大量汽车通过每天有大量汽车通过,设每辆汽车设每辆汽车,在一天的某段时间内出事故的概率在一天的某段时间内出事故的概率为为0.0001,在每天的该段时间内有在每天的该段时间内有1000 辆汽车通辆汽车通过过,问出事故的次数不小于问出事故的次数不小于2的概率是多少的概率是多少?4.几何分布几何分布 若随机变量若随机变量 X 的分布律为的分布律为则称则称 X 服从服从几何分布几何分布.实例实例 设某批产品的次品率为设某批产品的次品率为 p,对
9、该批产品做有对该批产品做有放回的抽样检查放回的抽样检查,直到第一次抽到一只次品为止直到第一次抽到一只次品为止(在此之前抽到的全是正品在此之前抽到的全是正品),那么所抽到的产品那么所抽到的产品数目数目 X 是一个随机变量是一个随机变量,求求X 的分布律的分布律.所以所以 X 服从几何分布服从几何分布.说明说明 几何分布可作为描述某个试验几何分布可作为描述某个试验 “首次成功首次成功”的概率模型的概率模型.解解5.超几何分布超几何分布设设X的分布律为的分布律为 超几何分布在关于废品率的计件检验中常用到超几何分布在关于废品率的计件检验中常用到.说明说明1.常见离散型随机变量的分布常见离散型随机变量的
10、分布两点分布两点分布二项分布二项分布泊松分布泊松分布几何分布几何分布三、内容小结三、内容小结超几何分布超几何分布二项分布二项分布泊松分布泊松分布两点分布两点分布例例1 1 为了保证设备正常工作为了保证设备正常工作,需配备适量的维修工需配备适量的维修工人人(工人配备多了就浪费工人配备多了就浪费,配备少了又要影响生产配备少了又要影响生产),现有同类型设备现有同类型设备300台台,各台工作是相互独立的各台工作是相互独立的,发生发生故障的概率都是故障的概率都是0.01.在通常情况下一台设备的故障在通常情况下一台设备的故障可由一个人来处理可由一个人来处理(我们也只考虑这种情况我们也只考虑这种情况),问至
11、少问至少需配备多少工人需配备多少工人,才能保证设备发生故障但不能及时才能保证设备发生故障但不能及时维修的概率小于维修的概率小于0.01?解解所需解决的问题所需解决的问题使得使得合理配备维修工人问题合理配备维修工人问题备份题备份题由泊松定理得由泊松定理得故有故有即即个工人个工人,才能保证设备发生故障但不能及时维修的才能保证设备发生故障但不能及时维修的概率小于概率小于0.01.故至少需配备故至少需配备8例例2 (人寿保险问题人寿保险问题)有有2500个同年龄同社会阶层个同年龄同社会阶层的人在保险公司里参加了人寿保险的人在保险公司里参加了人寿保险,在每一年里在每一年里每个人死亡的概率为每个人死亡的概
12、率为0.002,每个参加保险的人在每个参加保险的人在1月月1日付日付12元保险费元保险费,而在死亡时而在死亡时,家属可在公司里家属可在公司里领取领取2000元元.问问(1)保险公司亏本的概率是多少保险公司亏本的概率是多少?(2)保险公司获利不少于一万元的概率是多少保险公司获利不少于一万元的概率是多少?保险公司在保险公司在1月月1日的收入是日的收入是 2500 12=30000元元解解:设设X表示这一年内的死亡人数表示这一年内的死亡人数,则则保险公司这一年里付出保险公司这一年里付出2000X元元.假定假定 2000X 30000,即即X 15人时公司亏本人时公司亏本.于是于是,P公司亏本公司亏本=P X 15=1-PX 14由泊松定理得由泊松定理得P公司亏本公司亏本(2)获利不少于一万元获利不少于一万元,即即也即也即X 10P获利不少于一万元获利不少于一万元=PX 1030000-2000X 10000,