《离散型随机变量及其分布列随机变量ppt课件.ppt》由会员分享,可在线阅读,更多相关《离散型随机变量及其分布列随机变量ppt课件.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物2.1.1离散型随机变量及其分布列-随机变量我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例1 1:某人在射击训练中,射击一次,命中的环数:某人在射击训练中,射击一次,命中的环数. .例例2 2:某纺织公司的某次产品检验,在可能含有次品
2、:某纺织公司的某次产品检验,在可能含有次品的的100100件产品中任意抽取件产品中任意抽取4 4件,其中含有的次品件数件,其中含有的次品件数. .若用若用表示所含次品数,表示所含次品数,有哪些取值?有哪些取值?若用若用表示命中的环数,表示命中的环数,有哪些取值?有哪些取值?可取可取0环、环、1环、环、2环、环、10环环,共共11种结果种结果可取可取 0件、件、1件、件、2件、件、3件、件、4件件,共共5种结果种结果思考思考:把一枚硬币向上抛,可能会出现哪几种结果?能把一枚硬币向上抛,可能会出现哪几种结果?能否用数字来刻划这种随机试验的结果呢?否用数字来刻划这种随机试验的结果呢?说明:说明:(1
3、)任何一个随机试验的结果我们可以进行数量化;任何一个随机试验的结果我们可以进行数量化; (2)同一个随机试验的结果同一个随机试验的结果,可以赋不同的数值可以赋不同的数值. =1,表示正面向上;,表示正面向上; =0,表示反面向上,表示反面向上我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物练习一练习一练习二练习二定义定义:如果随机实验的结果可以用一个变量来表示,那如果随机实验的结果可以用一个变量来表示,那么这样的变量叫做么这样的变量叫做随机变量随机变量。随机变量常用希腊字母随机变量常用希腊字母、等表示。等表
4、示。1.1.如果随机变量可能取的值可以按次序一一列出(可以如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做是无限个)这样的随机变量叫做离散型随机变量离散型随机变量. .2.2.如果随机变量可能取的值是某个区间的一切值,这样如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做的随机变量叫做连续型随机变量连续型随机变量. .注注:(1):(1)有些随机试验的结果虽然不具有数量性质,但也有些随机试验的结果虽然不具有数量性质,但也可以用数量来表达。如投掷一枚硬币,可以用数量来表达。如投掷一枚硬币,=1=1,表示正面,表示正面向上,向上,=0=0,表示反面向上,表示反面
5、向上. .(2 2)若)若是随机变量是随机变量, ,ab,a、b是常数,则是常数,则也也是随机变量是随机变量附附: :随机变量随机变量 或或 的特点:的特点:(1)(1)可以用数表示;可以用数表示;(2)(2)试验之试验之前可以判断其可能出现的所有值前可以判断其可能出现的所有值;(3);(3)在试验之前不可能在试验之前不可能确定取何值。确定取何值。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物练习一练习一: :写出下列各随机变量可能的取值写出下列各随机变量可能的取值: :(1)(1)从从1010张已编号的
6、卡片(从张已编号的卡片(从1 1号到号到1010号)中任取号)中任取1 1张,被取出的卡片的号数张,被取出的卡片的号数(2)(2)一个袋中装有一个袋中装有5 5个白球和个白球和5 5个黑球,从中任取个黑球,从中任取3 3个,个,其中所含白球数其中所含白球数(3 3)抛掷两个骰子,所得点数之和)抛掷两个骰子,所得点数之和(4)(4)接连不断地射击接连不断地射击, ,首次命中目标需要的射击次数首次命中目标需要的射击次数(5)(5)某一自动装置无故障运转的时间某一自动装置无故障运转的时间(6)(6)某林场树木最高达某林场树木最高达3030米,此林场树木的高度米,此林场树木的高度离离散散型型连连续续型
7、型(1 1、2 2、3 3、1010)( 内的一切值)内的一切值) 0,30 取取( 内的一切值)内的一切值)(0,) 取取(0 0、1 1、2 2、3 3)2,3,4,5,6,7,8,9,10,11,12 1,2,3, 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物注注:随机变量即是随机试验的试验结果和实数之间的一种随机变量即是随机试验的试验结果和实数之间的一种对应关系对应关系.1.1.将一颗均匀骰子掷两次,不能作为随机变量的是将一颗均匀骰子掷两次,不能作为随机变量的是( )( )(A)两次出现的点数之
8、和两次出现的点数之和 (B)两次掷出的最大点数两次掷出的最大点数(C)第一次减去第二次的点数差第一次减去第二次的点数差 (D)抛掷的次数抛掷的次数D2.2.某人去商厦为所在公司购买玻璃水杯若干只某人去商厦为所在公司购买玻璃水杯若干只, ,公司要求公司要求至少要买至少要买5050只只, ,但不得超过但不得超过8080只只. .商厦有优惠规定:一次商厦有优惠规定:一次购买小于或等于购买小于或等于5050只的不优惠只的不优惠. .大于大于5050只的,超出的部只的,超出的部分按原价格的分按原价格的7 7折优惠折优惠. .已知水杯原来的价格是每只已知水杯原来的价格是每只6 6元元. .这个人一次购买水
9、杯的只数这个人一次购买水杯的只数 是一个随机变量,那么他所是一个随机变量,那么他所付款付款 是否也为一个随机变量呢是否也为一个随机变量呢? ? 、 有什么关系呢?有什么关系呢?902 . 47 . 06)50(650 N ,80,50我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物3.1.1.袋中有大小相同的袋中有大小相同的5 5个小球,分别标有个小球,分别标有1 1、2 2、3 3、4 4、5 5五个号码,现在在有放回的条件下取出两个小球,设五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为
10、,则所有可能值的个数是两个小球号码之和为,则所有可能值的个数是_个;个;“”表示表示 4 “第一次抽第一次抽1 1号、第二次抽号、第二次抽3 3号,或者第一次抽号,或者第一次抽3 3号、号、第二次抽第二次抽1 1号,或者第一次、第二次都抽号,或者第一次、第二次都抽2 2号号9 答:因为一枚骰子的点数可以是答:因为一枚骰子的点数可以是1 1,2 2,3 3,4 4,5 5,6 6六种六种结果之一,由已知得结果之一,由已知得 ,也就是说,也就是说“ “ 4”4”就是就是“ “ 5”5”所以,所以,“ “ 4”4”表示第一枚为表示第一枚为6 6点,第二枚为点,第二枚为1 1点点 55 2.2.抛掷两
11、枚骰子各一次,记第一枚骰子掷出的点抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为数与第二枚骰子掷出的点数的差为 ,试问,试问: : (1)(1)“4”“4”表示的试验结果是什么表示的试验结果是什么?(2)P (?(2)P (4)=?4)=?我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物3.3.一袋中装有一袋中装有5 5个白球,个白球,3 3个红球,现从袋中往外取球,个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到每次取出一个,取出后记下球的颜色,然后放回,
12、直到红球出现红球出现1010次时停止,停止时取球的次数次时停止,停止时取球的次数是一个随机是一个随机变量,则变量,则P(=12)=_(=12)=_。(用式子表示)。(用式子表示)我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物二、离散型随机变量的分布列二、离散型随机变量的分布列123,ix x xxx1x2xipp1p2pi称为随机变量称为随机变量的概率分布,简称的概率分布,简称的分布列。的分布列。则表则表(1,2,)ix i ()iiPxp取每一个值取每一个值 的概率的概率 设离散型随机变量设离散型随机变
13、量可能取的值为可能取的值为1、概率分布(分布列)、概率分布(分布列)我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物离散型随机变量的分布列具有下述两个性质:离散型随机变量的分布列具有下述两个性质: 一般地,离散型随机变量在某一范围内的概一般地,离散型随机变量在某一范围内的概率等于它取这个范围内各个值的概率之和。率等于它取这个范围内各个值的概率之和。,321, 0).1( ipi1).2(321 ppp例例1、某一射手射击所得环数的分布列如下:、某一射手射击所得环数的分布列如下:45678910p0.02 0
14、.04 0.06 0.09 0.28 0.29 0.22求此射手求此射手“射击一次命中环数射击一次命中环数77”的概的概率率我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物练习练习1 1、随机变量、随机变量的分布列为的分布列为求常数求常数a。解:由离散型随机变量的分布列的性质有解:由离散型随机变量的分布列的性质有20.160.31105aaa解得:解得:910a35a(舍)或(舍)或-10123p0.16a/10a2a/50.3我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但
15、是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例2:抛掷两枚骰子,点数之和为:抛掷两枚骰子,点数之和为,则,则可可能取的值有:能取的值有:2,3,4,12.的概率分布为:的概率分布为:23456789101112361361362362363363364364365365366我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物练习练习2 2:一个口袋里有:一个口袋里有5 5只球只球, ,编号为编号为1,2,3,4,5,1,2,3,4,5,在袋中在袋中同时取出同时取出3 3只只, ,以以表示取出的表
16、示取出的3 3个球中的最小号码个球中的最小号码, ,试试写出写出的分布列的分布列. . 解解: : 随机变量随机变量的可取值为的可取值为 1,2,3.1,2,3.当当=1=1时时, ,即取出的三只球中的最小号码为即取出的三只球中的最小号码为1,1,则其它则其它两只球只能在编号为两只球只能在编号为2,3,4,52,3,4,5的四只球中任取两只的四只球中任取两只, ,故故有有P(=1)= P(=1)= =3/5;=3/5;3524/CC同理可得同理可得P(=2)=3/10;P(=3)=1/10.P(=2)=3/10;P(=3)=1/10. 因此因此,的分布列如下表所示的分布列如下表所示 1 2 3
17、 p 3/5 3/10 1/10我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物1.随机变量随机变量是随机事件的结果的数量化是随机事件的结果的数量化随机变量随机变量的取值对应于随机试验的某一随机事件。的取值对应于随机试验的某一随机事件。 随机变量是随机试验的试验结果和实数之间的一个随机变量是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客对应关系,这种对应关系是人为建立起来的,但又是客观存在的这与函数概念的本质是一样的,只不过在函数观存在的这与函数概念的本质是一样的,只不过在函数概念中,函数概念中,函数f(x)的自变量的自变量x是实数,而在随机变量的概是实数,而在随机变量的概念中,随机变量念中,随机变量的自变量是试验结果。的自变量是试验结果。3. 若若是随机变量,则是随机变量,则=a+b(其中(其中a、b是常数)也是是常数)也是随机变量随机变量 4. 离散型随机变量分布列的性质。离散型随机变量分布列的性质。2.随机变量分为随机变量分为离散型随机变量离散型随机变量和和连续型随机变量连续型随机变量。