《【数学】全概率公式及其逆公式练习-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册.docx》由会员分享,可在线阅读,更多相关《【数学】全概率公式及其逆公式练习-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、全概率公式及其逆公式练习1甲袋中有5个白球、7个红球,乙袋中有4个白球、2个红球,从两个袋中任选一袋,从中任取一球,则取到的球是白球的概率为()ABCD(多选题)2甲箱中有4个红球,2个白球和3个黑球,乙箱中有3个红球,3个白球和3个黑球,先从甲箱中随机取出一球放入乙箱,分别以,和表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B表示由乙箱取出的球是红球的事件,则下列结论正确的是()A事件B与事件相互独立BCD3为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛
2、结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员对乙队的每名队员的胜率均为,甲队其余4名队员对乙队每名队员的胜率均为.(注:比赛结果没有平局)(1)求甲队明星队员在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(2)求甲乙两队比赛3局,甲队获得最终胜利的概率;(3)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员上场的概率.4人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验
3、概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.求选到的袋子为甲袋的概率,将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原
4、来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.5假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品现从两箱中随意挑选一箱,然后从该箱中随机取1个零件(1)求取出的零件是次品的概率;(2)已知取出的是次品,求它是从第一箱取出的概率6设有来自三个地区的各10名,15名和25名考生的报名表,其中女生报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后取出两份(1)求先抽到的一份是女生报名表的概率(2)已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率7已知有一道有四个选项的单项选择题和一道
5、有四个选项的多项选择题,小明知道每道多项选择题均有两个或三个正确选项但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项(1)如果小明不知道单项选择题的正确答案,就作随机猜测已知小明知道单项选择题的正确答案和随机概率都是,在他做完单项选择题后,从卷面上看,在题答对的情况下,求他知道单项选择题正确答案的概率;(2)假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为,选择两个选项的概率为,选择三个选项的概率为已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择记表示小明做完该道多项选择题后所得的分数求:(i);(ii)的分布列及数学期望试卷第3页,共4页学科网(北京)股份有限公司学科网(北京)股份有限公司