《27.2.1 相似三角形的判定(1)教案.docx》由会员分享,可在线阅读,更多相关《27.2.1 相似三角形的判定(1)教案.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课题 27.2.1相似三角形的判定(一)【总第3课时】教学任务分析活道镇初级中学 陆炳泉教学目的:(1) 会用符号“”表示相似三角形如ABC ;(2) 知道当ABC与的相似比为k时,与ABC的相似比为1/k(3) 理解掌握平行线分线段成比例定理(4) 在平行线分线段成比例定理探究过程中,让学生运用“操作比较发现归纳”分析问题(5) 在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质重点、难点教学重点: 理解掌握平行线分线段成比例定理及应用教学难点: 掌握平行线分线段成比例定理应用一. 创设情境谈话复习引入课题(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的
2、就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作ABCABC,k就是它们的相似比反之如果ABCABC,则有A=A, B=B, C=C, 且 (3)问题:如果k=1,这两个三角形有怎样的关系?教师活动:明确 (1)在相似多边形中,最简单的就是相似三角形。(2)用符号“”表示相似三角形如ABC ;(3)当ABC与的相似比为k时,与ABC的相似比为1/k活动1 (教材P40页 探究1) 如图27.2-1),任意画两条直线l1 , l2,再画三条与l1 , l2 相交的平行线l3 , l4, l5.分别量度l3 , l4, l5.在l1 上截得的
3、两条线段AB, BC和在l2 上截得的两条线段DE, EF的长度, ABBC 与DEEF相等吗?任意平移l5 , 再量度AB, BC, DE, EF的长度, ABBC 与DEEF相等吗?教师活动:教师出示探究,提出问题学生活动: 学生操作画图,量度AB, BC, DE, EF的长度并计算比值,小组讨论,共同交流,回答结果师生活动: 提出问题,ABAC=DE( ),BCAC=( )DF,师生共同交流强调“对应线段的比是否相等”师生归纳总结:(板书并朗读)平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等。在活动中,师生应重点关注:平行线分线段成比例定理中相比线段同线;活动2平行
4、线分线段成比例定理推论思考:1、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),所得的对应线段的比会相等吗?依据是什么?2、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?学生活动: 学生观察思考,小组讨论回答;师生归纳总结:(板书并朗读)平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段的比相等二. 通过练习巩固平行线分线段成比例定理及其推论活动3 练习问题:如图,在ABC中,DEBC,AC=4 ,AB=3,EC=1.求
5、AD和BD.教师活动:教师提出问题;学生活动:学生阅题,小组讨论后解答问题. 教师活动:在活动中,教师应重点关注:在练习中检查学生对“平行线分线段成比例定理及推论”理解三. 小结巩固活动4 (1) 谈谈本节课你有哪些收获“三角形相似的预备定理”这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似(2) 相似比是带有顺序性和对应性的:如ABCABC的相似比,那么ABCABC的相似比就是,它们的关系是互为倒数这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(3)作业1如图,ABCAED, 其中DEBC,找出对应角并写出对应边的比例式2如图,ABCAED,其中ADE=B,找出对应角并写出对应边的比例式