《初一数学上册教案1范本.docx》由会员分享,可在线阅读,更多相关《初一数学上册教案1范本.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 初一数学上册教案10篇范本 一、教学目标 1、了解二次根式的意义; 2、把握用简洁的一元一次不等式解决二次根式中字母的取值问题; 3、把握二次根式的性质和,并能敏捷应用; 4、通过二次根式的计算培育学生的规律思维力量; 5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。 二、教学重点和难点 重点: (1)二次根的意义; (2)二次根式中字母的取值范围。 难点:确定二次根式中字母的取值范围。 三、教学方法 启发式、讲练结合。 四、教学过程 (一)复习提问 1、什么叫平方根、算术平方根? 2、说出以下各式的意义,并计算 (二)引入新课 新课:二次根式 定义:式子叫做二次根式。 对于请同学们
2、争论论应留意的问题,引导学生总结: (1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢? 若根式中含有字母必需保证根号下式子大于等于零,因此字母范围的限制也是根式的一局部。 (2)是二次根式,而,提问学生:2是二次根式吗?明显不是,因此二次 根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题依据二次根式定义,由学生分析、答复。 例1当a为实数时,以下各式中哪些是二次根式? 例2 x是怎样的实数时,式子在实数范围有意义? 解:略。 说明:这个问题实质上是在x是什么数时,x3是非负数,式子有意义。 例3当字母取何值时,以下各式为二次根式: 分析:
3、由二次根式的定义,被开方数必需是非负数,把问题转化为解不等式。 解: (1)a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式。 (2)3x0,x0,即x0时,是二次根式。 (3),且x0,x0,当x0时,是二次根式。 (4),即,故x20且x20,x2。当x2时,是二次根式。 例4以下各式是二次根式,求式子中的字母所满意的条件: 分析:这个例题依据二次根式定义,让学生分析式子中字母应满意的条件,进一步稳固二次根式的定义,。即:只有在条件a0时才叫二次根式,此题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。 解: (1)由2a+30,得。 (2)由,得3a10,
4、解得。 (3)由于x取任何实数时都有|x|0,因此,|x|+0。10,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。 (4)由b20得b20,只有当b=0时,才有b2=0,因此,字母b所满意的条件是:b=0。 初一数学上册教案篇2 教学目标: 1、 在现实情境中理解线段、射线、直线等简洁图形(学问目标) 2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(力量目标) 3、 通过操作活动,了解两点确定一条直线等事实,积存操作活动的阅历,培育学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标) 教学难点: 了解“两点确定一条直线”等事实,并应用它解决一些实际问题 教
5、 具: 多媒体、棉线、三角板 教学过程: 情景创设: 观看电脑展现图,使学生感受图形世界的丰富多彩,激发学习兴趣。 如何来描述我们所看到的现象? 教学过程: 1、 一段拉直的棉线可近似地看作线段 师生画线段 演示投影片1: 将线段向一个方向无限延长,就形成了_ 学生画射线 将线段向两个方向无限延长就形成了_ 学生画直线 2、 争论小组沟通: 生活中,还有哪些物体可以近似地看作线段、射线、直线? (强调近似两个字,留意引导学生线段、射线、直线是从生活上抽象出来的) 线段、射线、直线,有哪些不同之处, 有哪些一样之处? (鼓舞学生用自己的语言描述它们各自的特点) 3、 问题1:图中有几条线段?哪几
6、条? “要说清晰哪几条,必需先给线段起名字!”从而引出线段的记法。 点的记法: 用一个大写英文字母 线段的记法: 用两个端点的字母来表示 用一个小写英文字母表示 自己想方法表示射线,让学生充分争论,并比拟如何表示合理 射线的记法: 用端点及射线上一点来表示,留意端点的字母写在前面 直线的记法: 用直线上两个点来表示 用一个小写字母来表示 强调大写字母与小写字母来表示它们时的区分 (我们知道他们是无限延长的,我们为了便利讨论商定成俗的用上面的方法来表示它们。) 练习1:读句画图(如图示) (1) 连BC、AD (2) 画射线AD (3) 画直线AB、CD相交于E (4) 延长线段BC,反向延长线
7、段DA相交与F (5) 连结AC、BD相交于O 练习2:右图中,有哪几条线段、射线、直线 4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢? 学生通过画图,得出结论:过一点可以画很多条直线 经过两点有且只有一条直线 问题3 假如你想将一硬纸条固定在硬纸板上,至少需要几根图钉? 为什么?(学生通过操作,答复) 小组争论沟通: 你还能举出一个能反映“经过两点有且只有一条直线”的实例吗? 适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,常常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。 5、 小结: 学生回忆今日
8、这节课学过的内容 进一步清楚线段、射线、直线的概念 强调线段、射线、直线表示方法的把握 6、 作业: 阅读“读一读” P121 习题4的1、2、3、4作为思索题 初一数学上册教案篇3 教学目标 1.学问与技能 能运用运算律探究去括号法则,并且利用去括号法则将整式化简. 2.过程与方法 经受类比带有括号的有理数的运算,发觉去括号时的符号变化的规律,归纳出去括号法则,培育学生观看、分析、归纳力量. 3.情感态度与价值观 培育学生主动探究、合作沟通的意识,严谨治学的学习态度. 重、难点与关键 1.重点:去括号法则,精确应用法则将整式化简. 2.难点:括号前面是“-”号去括号时,括号内各项变号简单产生
9、错误. 3.关键:精确理解去括号法则. 教具预备 投影仪. 教学过程 一、新授 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢? 现在我们来看本章引言中的问题(3): 在格尔木到拉萨路段,假如列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为 100t+120(t-0.5)千米 冻土地段与非冻土地段相差 100t-120(t-0.5)千米 上面的式子、都带有括号,它们应如何化简? 思路点拨:教师引导,启发学生类比数的运算,利用安
10、排律.学生练习、沟通后,教师归纳: 利用安排律,可以去括号,合并同类项,得: 100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60 100t-120(t-0.5)=100t-120t-120(-0.5)=-20t+60 我们知道,化简带有括号的整式,首先应先去括号. 上面两式去括号局部变形分别为: +120(t-0.5)=+120t-60 -120(t-0.5)=-120+60 比拟、两式,你能发觉去括号时符号变化的规律吗? 思路点拨:鼓舞学生通过观看,试用自己的语言表达去括号法则,然后教师板书(或用屏幕)展现: 假如括号外的因数是正数,去括号后原括号内各项的
11、符号与原来的符号一样; 假如括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 特殊地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3). 利用安排律,可以将式子中的括号去掉,得: +(x-3)=x-3(括号没了,括号内的每一项都没有变号) -(x-3)=-x+3(括号没了,括号内的每一项都转变了符号) 去括号规律要精确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项. 二、范例学习 例1.化简以下各式: (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 思路点拨:讲解时,先
12、让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号. 解答过程按课本,可由学生口述,教师板书. 例2.两船从同一港口同时动身反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时. (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米? 教师操作投影仪,展现例2,学生思索、小组沟通,寻求解答思路. 思路点拨:依据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,
13、甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时动身反向而行,所以两船相距等于甲、乙两船行程之和. 解答过程按课本. 去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用安排律将数字2与括号内的各项相乘,然后再去括号,娴熟后,再省去这一步,直接去括号. 三、稳固练习 1.课本第68页练习1、2题. 2.计算:5xy2-3xy2-(4xy2-2x2y)+2x2y-xy2.5xy2 思路点拨:一般地,先去小括号,再去中括号. 四、课堂小结
14、 去括号是代数式变形中的一种常用方法,去括号时,特殊是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都转变符号.去括号规律可以简洁记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项。 五、作业布置 1.课本第71页习题2.2第2、3、5、8题。 2.选用课时作业设计。 初一数学上册教案篇4 一、教材分析 本节内容是人民教育出版社出版义务教育课程试验教科书(五四学制)数学(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。 二、设计思想 本节内容是学生把握了“整式”有关概念的延展学习,为后继学习整式运算、因式
15、分解、一元二次方程及函数学问奠定根底,是“数”向“式”的正式过度,具有非常重要地位。 八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观看、归纳、探究的技能。因此,我结合教材,立足让每个学生都有进展的宗旨,我采纳合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生供应充分的、和谐的探究空间让学生学习。通过学习活动不但培育学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增加应用数学的意识。 三、教学目标: (一)学问技能目标: 1、理解同类项的含义,并能区分同类项。 2、把握合并同类项的方法,娴熟
16、的合并同类项。 3、把握整式加减运算的方法,娴熟进展运算。 (二)过程方法目标: 1、通过探究同类项定义、合并同类项的方法的活动,培育学生观看、归纳、探究的力量。 2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的精确率培育学生化简意识,进展学生的抽象概括力量。 3、通过讨论引例、探究例1的活动,进展学生的形象思维,初步培育学生的符号感。 (三)情感价值目标: 1、通过沟通协商、分组探究,培育学生合作沟通的意识和敢于探究未知问题的精神。 2、通过学习活动培育学生科学、严谨的学习态度。 四、教学重、难点: 合并同类项 五、教学关键: 同类项的概念 六、教学预备: 教师: 1
17、、筛选数学题目,细心设置问题情境。 2、制作大小不等的两个长方体纸盒实物模型,并能绽开。 3、设计多媒体教学课件。(要凸显单项式中系数、字母、指数的特征长方体纸盒立体图、绽开图。) 学生: 1、复习有关单项式的概念、有理数四则运算及去括号的法则) 2、每小组制作大小不等的两个长方体纸盒模型。 初一数学上册教案篇5 一、课题 27.3 过三点的圆 二、教学目标 1.经受过一点、两点和不在同始终线上的三点作圆的过程。 2. 知道过不在同一条直线上的三个点画圆的方法 3.了解三角形的外接圆和外心。 三、教学重点和难点 重点:经受过一点、两点和不在同始终线上的三点作圆的过程。 难点:知道过不在同一条直
18、线上的三个点画圆的方法。 四、教学手段 现代课堂教学手段 五、教学方法 学生自己探究 六、教学过程设计 (一)、新授 1.过已知一个点A画圆,并考虑这样的圆有多少个? 2.过已知两个点A、B画圆,并考虑这样的圆有多少个? 3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个? 让学生以小组为单位,进展探究、思索、沟通后,小组选派代表向全班学生展现本小组的探究成果,在展现后,承受其他学生的质疑。 得出结论:过一点可以画很多个圆;过两点也可以画很多个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同始终线上的三个点可以画一个圆,并且这样的圆只有一个。 不在同始终线上的三个点确定一个圆
19、。 给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。 例:画已知三角形的外接圆。 让学生探究课本第15页习题1。 一起探究 八年级(一)班的学生为老区的小朋友捐款500元,预备为他们购置甲、乙 两种图书共12套。已知甲种图书每套45元,乙种图书每套40元。这些钱最多能买甲种图书多少套? 分析:带着学生完成课本第13页的表格,并完成2、3 问题,使学生清晰通过列表可以更好的分析题目,对于情景较为简单的问题情景可采纳这种分析方法解题。另外通过此题,使学生熟悉到:在应不等式解决实际问题时,当求出不等式的解集后,还要依据问题的实际意义确定
20、问题的解。 (二)、小结 七、练习设计 P15习题2、3 八、教学后记 后备练习: 1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 。 2. 如图,有A, ,C三个居民小区的位置成三角形,现打算在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在() A.在AC,BC两边高线的交点处 B.在AC,BC两边中线的交点处 C.在AC,BC两边垂直平分线的交点处 D.在A,B两内角平分线的交点处 初一数学上册教案篇6 教学目标: 利用数形结合的数学思想分析问题解决问题。 利用已有二次函数的学问阅历,自主进展探究和合作学习,解决情境中的数学问题,初步形成数学建模
21、力量,解决一些简洁的实际问题。 在探究中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得胜利,树立自信念。 教学重点和难点: 运用数形结合的思想方法进展解二次函数,这是重点也是难点。 教学过程: (一)引入: 分组复习旧知。 探究:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息? 可引导学生从几个方面进展争论: (1)如何画图 (2)顶点、图象与坐标轴的交点 (3)所形成的三角形以及四边形的面积 (4)对称轴 从上面的问题导入今日的课题二次函数中的图象与性质。 (二)新授: 1、再探究:二次函数y=x2+4x+3图象上找
22、一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。 再探究:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。 再探究:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相像。 2、让同学争论:从已知条件如何求二次函数的解析式。 例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。 (三)提高练习 依据我们学校人人皆知的船模特色工程设计了这样一个情境: 让班级中的上科院小院士来简要介绍学校船模组的状况以及在绘制船模图纸时也常用
23、到抛物线的学问的状况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。 让学生在练习中体会二次函数的图象与性质在解题中的作用。 (四)让学生争论小结(略) (五)作业布置 1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k5)x(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=8。 (1)求二次函数的解析式; (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。 2、如图,一个二次函数的图象与直线y= x1的交点A、B分别在x、y轴上,点
24、C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。 3、卢浦大桥拱形可以近似看作抛物线的一局部,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DEAB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。 (1)求出图2上以这一局部抛物线为图象的函数解析式,写出函数定义域; (2)假如DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果准确到1米) 初一数学上册教案篇7 一、教学任务分析 1、教学目标定位 依据数学课程标准和素养
25、教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边好玩事物布满奇怪心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了肯定的归纳、总结表达的力量。因此,确定如下教学目标: (1).学问技能目标 让学生把握多边形的内角和的公式并娴熟应用。 (2).过程和方法目标 让学生经受学问的形成过程,熟悉数学特征,获得数学阅历,进一步进展学生的说理意识和简洁推理,合情推理力量。 (3).情感目标 鼓励学生的学习热忱,调动他们的学习积极性,使他们有自信念,激发学生乐于合作沟通意识和独立思索的习惯。 2、教学重、难点定位 教学重点是多边形的内角和的得出和应用。 教学难点是探究和归
26、纳多边形内角和的过程。 二、教学内容分析 1、教材的地位与作用 本课选自人教版数学七年级下册第七章第三节多边形的内角和的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。 2、联系及应用 本节课是以三角形的学问为根底,仿照三角形建立多边形的有关概念。因此 多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培育学生探究与归纳力量,体会把简单化为简洁,化未知为已知,从特别到一般和转化等重要的思想方法。而多边形在工程技术和有用图案等方面有很多的实际应用,下一节平面镶嵌就
27、要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。 三、教学诊断分析 学生对三角形的学问都已经把握。让学生由三角形的内角和等于180,是一个定值,猜测四边形的内角和也是一个定值,这是学生很简单理解的地方。由几个特别的四边形的内角和动身,譬如长方形、正方形的内角和都等于360,可知假如四边形的内角和是一个定值,这个定值是360。要得到四边形的内角和等于360这个结论最直接的方法就是用量角器来度量。让学生动手探究实践,在探究过程中发觉问题度量会有误差。发觉问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180,就得到四边形的内
28、角和等于360。让学生从特别四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都简单理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思索这个问题,这个活动对学生的动手力量要求进一步提高了,学生对这个问题的理解略微有些难度,但学生可依据自己本身的特点来加以补充和完善。在教学设计中,要求依据小组选择的方法探究多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把把握的学问运用到实践中;再者,小组内各个成员需要分工协作,才能够顺当的把任务完成;最终,学生还需要把
29、自己的思维从感性熟悉提升到理性熟悉的高度,这样就培育了学生合情推理的意识。 四、教法特点及预期效果分析 本节课借鉴了美国教育家杜威的在做中学的理论和叶圣陶先生所提倡的解放学生的手,解放学生的大脑,解放学生的时间的思想,我确定如下教法和学法: 1、教学方法的设计 我采纳了探究式教学方法,整个探究学习的过程布满了师生之间,学生之间的沟通和互动,表达了教师是教学活动的组织者、引导者、合,学生才是学习的主体。 2、活动的开展 利用学生的奇怪心设疑、解疑,组织活泼互动、有效的教学活动,鼓舞学生积极参加,大胆猜测,使学生在自主探究和合作沟通中理解和把握本节课的内容。 3、现代教育技术的应用 我利用课件帮助
30、教学,适时呈现问题情景,以丰富学生的感性熟悉,增加直观效果,提高课堂效率。探究活动在本次教学设计中占了特别大的比例,探究活动一设置目的让学生动手实践,并把新学问与学过的三角形的相关学问联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下根底;培育学生动手操作的力量和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培育学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的把握学问的状况,并促进学生积极思索;目的二凸现小组合作的特点,并促进学生情感沟通。 以上是我对多边形的内角和的教学设计说明。 初一数学上册教案篇8 教学目标 1、
31、学问与技能 能应用所学的函数学问解决现实生活中的问题,会建构函数“模型”。 2、过程与方法 经受探究一次函数的应用问题,进展抽象思维。 3、情感、态度与价值观 培育变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。 重、难点与关键 1、重点:一次函数的应用。 2、难点:一次函数的应用。 3、关键:从数形结合分析思路入手,提升应用思维。 教学方法 采纳“讲练结合”的教学方法,让学生逐步地熟识一次函数的应用。 教学过程 一、范例点击,应用所学 【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随
32、跑步时间x(单位:分)变化的函数关系式,并画出函数图象。 y= 【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少? 解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200x)吨。B城运往C、D乡的肥料量分别为(240x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200x)+15(240x)+24(60+x),即y=4x+10040(0x200)。 由图
33、象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。 拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运? 二、随堂练习,稳固深化 课本P119练习。 三、课堂总结,进展潜能 由学生自我评价本节课的表现。 四、布置作业,专题突破 课本P120习题14.2第9,10,11题。 板书设计 1、一次函数的应用例: 初一数学上册教案篇9 教学目标 1.使学生正确理解的意义,把握的三要素; 2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;
34、 3.使学生初步理解数形结合的思想方法. 教学重点和难点 重点:初步理解数形结合的思想方法,正确把握画法和用上的点表示有理数. 难点:正确理解有理数与上点的对应关系. 课堂教学过程设计 一、从学生原有认知构造提出问题 1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗? 2.用“射线”能不能表示有理数?为什么? 3.你认为把“射线”做怎样的改动,才能用来表示有理数呢? 待学生答复后,教师指出,这就是我们本节课所要学习的内容. 二、讲授新课 让学生观看挂图放大的温度计,同时教师赐予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,依据温度计的液面的不同位置就可以读
35、出不同的数,从而得到所测的温度.在0上10个刻度,表示10;在0下5个刻度,表示-5. 与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.详细方法如下(边说边画): 1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,假如所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0); 2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0以上为正,0以下为负); 3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,
36、依次表示为-1,-2,-3, 提问:我们能不能用这条直线表示任何有理数?(可列举几个数) 在此根底上,给出的定义,即规定了原点、正方向和单位长度的直线叫做. 进而提问学生:在上,已知一点P表示数-5,假如上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?假如单位长度转变呢?假如直线的正方向转变呢? 通过上述提问,向学生指出:的三要素原点、正方向和单位长度,缺一不行. 三、运用举例 变式练习 例1 画一个,并在上画出表示以下各数的点: 例2 指出上A,B,C,D,E各点分别表示什么数. 课堂练习 示出来. 2.说出下面上A,B,C,D,O,M各点表示什么数? 最终引导学生得出
37、结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示. 四、小结 指导学生阅读教材后指出:是特别重要的数学工具,它使数和直线上的点建立了对应关系,它提醒了数和形之间的内在联系,为我们讨论问题供应了新的方法. 本节课要求同学们能把握的三要素,正确地画出,在此还要提示同学们,全部的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再讨论. 五、作业 1.在下面上: (1)分别指出表示-2,3,-4,0,1各数的点. (2)A,H,D,E,O各点分别表示什么数? 2.在下面上,A,B,C,D各点分别表示什么数?
38、 3.以下各小题先分别画出,然后在上画出表示大括号内的一组数的点: (1)-5,2,-1,-3,0; (2)-4,2.5,-1.5,3.5; 初一数学上册教案篇10 学问技能 会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。 数学思索 1.经受探究详细问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步进展符号意识。 2.通过一元一次方程的学习,体会方程模型思想和化归思想。 解决问题 能在详细情境中从数学角度和方法解决问题,进展应用意识。 经受从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。 情感态度 经受观看、试验计算、沟通等活动
39、,激发求知欲,体验探究发觉的欢乐。 教学重点 建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。 教学难点 分析实际问题中的相等关系,列出方程。 教学过程 活动一 学问回忆 解以下方程: 1. 3x+1=4 2. x-2=3 3. 2x+0.5x=-10 4. 3x-7x=2 提问:解这些方程时,方程的解一般化成什么形式?这些题你采纳了那些变形或运算? 教师:前面我们学习了简洁的一元一次方程的解法,下面请大家解以下方程。 出示问题(幻灯片)。 学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。 教师提问:(略) 教师追问:变形的依据是什么? 学
40、生独立思索、答复沟通。 本次活动中教师关注: (1)学生能否精确理解运用等式性质和合并同列项求解方程。 (2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。 通过这个环节,引导学生回忆利用等式性质和合并同类项对方程进展变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为连续学习做好铺垫。 活动二 问题探究 问题2:把一些图书分给某班学生阅读,假如每人分3本,则剩余20本;假如每人分4本,则还缺25本。这个班有多少学生? 教师:出示问题(投影片) 提问:在这个问题中,你知道了什么?依据现有阅历你准备怎么做? (学生尝试提问) 学生:读题,审题,独立思索,争论沟通。 1.找出问题中的已知数和已知条件。(独立答复) 2.设未知数:设这个班有x名学生。 3.列代数式:x参加运算,探究运算关系,表示相关量。(争论、答复、沟通) 4.找相等关系: 这批书的总数是一个定值,表示它的两个等式相等。(学生答复,教师追问) 5.列方程:3x+20=4x-25(1) 总结提问:通过列方程解决实际问题分析时,要经受那些步骤?书写时呢? 教师提问1:这个方程与我们前面解过的方程有什么不同? 学生争论后发觉:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。 教