2413_弧_弦_圆心角 (2)课件.ppt

上传人:s****8 文档编号:94880696 上传时间:2023-08-10 格式:PPT 页数:15 大小:1.38MB
返回 下载 相关 举报
2413_弧_弦_圆心角 (2)课件.ppt_第1页
第1页 / 共15页
2413_弧_弦_圆心角 (2)课件.ppt_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2413_弧_弦_圆心角 (2)课件.ppt》由会员分享,可在线阅读,更多相关《2413_弧_弦_圆心角 (2)课件.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、圆是中心对称图形吗圆是中心对称图形吗?它的对称中心在哪里它的对称中心在哪里?一、思考一、思考圆是中心对称图形,圆是中心对称图形,它的对称中心是圆心它的对称中心是圆心.NO把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度,NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度,NON 把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度,NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度,NON 定理定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合把

2、圆绕圆心旋转任意一个角度后,仍与原来的圆重合。把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度,由此可以看出,由此可以看出,点点NN仍落在圆上。仍落在圆上。圆心角圆心角:我们把顶点在圆心的角叫做:我们把顶点在圆心的角叫做圆心角圆心角.OBA二、概念二、概念如图中所示,如图中所示,AOB就是一个圆心角。就是一个圆心角。如图,将圆心角如图,将圆心角AOBAOB绕圆心绕圆心O O旋转到旋转到A AOBOB的位置,你能发的位置,你能发现哪些等量关系?为什么?现哪些等量关系?为什么?根据旋转的性质,将圆心角根据旋转的性质,将圆心角AOB绕圆心绕圆心O旋转到旋转到AOB

3、的位置时,显然的位置时,显然AOBAOB,射线,射线OA与与OA重合,重合,OB与与OB重合而同圆的半径相等,重合而同圆的半径相等,OA=OA,OB=OB,从而点,从而点A与与A重合,重合,B与与B重合重合OABOABABAB三、探究三、探究因此,弧因此,弧AB与弧与弧A1B1 重合,重合,AB与与AB重合重合ABA1B1=同样,还可以得到:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角圆心角_,所对的弦所对的弦_;在同圆或等圆中,如果两条弦相等,那么他们所对的在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角圆心角_,所

4、对的弧,所对的弧_这样,我们就得到下面的定理:这样,我们就得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等所对的弦也相等相等相等相等相等相等相等相等相等同圆或等圆中,同圆或等圆中,两个圆心角、两两个圆心角、两条弧、两条弦中条弧、两条弦中有一组量相等,有一组量相等,它们所对应的其它们所对应的其余各组量也相余各组量也相等等四、定理四、定理证明:证明:AB=AC AB=ACAB=AC,ABC ABC 等腰三角形等腰三角形又又ACB=60,ABC是等边三角形,是等边三角形,AB=BC=CA.AOBBOCAOC.ABCO五、例题五、例题例

5、例1 如图在如图在 O中,中,AB=AC ,ACB=60,求证求证:AOB=BOC=AOC.1.如图,如图,AB、CD是是 O的两条弦的两条弦(1)如果)如果AB=CD,那么,那么_,_(2)如果)如果 =,那么,那么_,_(3)如果)如果AOB=COD,那么,那么_,_(4)如果)如果AB=CD,OEAB于于E,OFCD于于F,OE与与OF相等吗?为什么?相等吗?为什么?CABDEFOAB=CDAB=CD相相 等等 因为因为ABAB=CDCD ,所以,所以AOB=AOB=COD.COD.又因为又因为AO=COAO=CO,BO=DOBO=DO,所以所以AOB AOB COD.COD.又因为又因

6、为OEOE 、OFOF是是ABAB与与CDCD对应边上的高,对应边上的高,所以所以 OEOE =OF.OF.六、练习六、练习CDABABCD=ABCD=2.如图,如图,AB是是 O的直径,的直径,,COD=35,求求AOE的度数的度数AOBCDE解:解:BCCD=DEBCCD=DEOABCD如图,如图,AC与与BD为为 O的两条互的两条互 相垂直的直径相垂直的直径.求证:求证:AB=BC=CD=DA;AB=BC=CD=DA.AB=BC=CD=DA 证明证明:AC与与BD为为 O的两条互相垂直的直径的两条互相垂直的直径,AOB=BOC=COD=DOA=90AB=BC=CD=DA(圆心角定理圆心角定理)点此继续知识延伸知识延伸圆心角定理的应用圆心角定理的应用圆心角定理圆心角定理圆心角的定义圆心角的定义学生练习学生练习圆的旋转不变性圆的旋转不变性

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁