教育专题:2413_弧_弦_圆心角.ppt

上传人:hyn****60 文档编号:70801756 上传时间:2023-01-28 格式:PPT 页数:23 大小:1.60MB
返回 下载 相关 举报
教育专题:2413_弧_弦_圆心角.ppt_第1页
第1页 / 共23页
教育专题:2413_弧_弦_圆心角.ppt_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《教育专题:2413_弧_弦_圆心角.ppt》由会员分享,可在线阅读,更多相关《教育专题:2413_弧_弦_圆心角.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、圆是中心对称图形吗圆是中心对称图形吗?它的对称中心在哪里它的对称中心在哪里?一、思考一、思考圆是中心对称图形,圆是中心对称图形,它的对称中心是圆心它的对称中心是圆心.把圆绕圆心旋转任意一个角度后,仍与原来的圆重合把圆绕圆心旋转任意一个角度后,仍与原来的圆重合。圆心角圆心角 所对所对的弧的弧为为 AB,过点过点O作弦作弦AB的垂线的垂线,垂足垂足为为M,OABM 顶点在圆心的角顶点在圆心的角,叫叫圆心角圆心角,如如 ,所对的弦所对的弦为为AB;图图1 则垂线段则垂线段OM的长度的长度,即圆即圆心到弦的距离,叫心到弦的距离,叫弦心距弦心距,图图1中,中,OM为为AB弦的弦心距。弦的弦心距。点击概念

2、点击概念1 1、判别下列各图中的角是不是圆心角,、判别下列各图中的角是不是圆心角,并说明理由。并说明理由。2、下列图中弦心距做对了的是()如图,将圆心角如图,将圆心角AOBAOB绕圆心绕圆心O O旋转到旋转到A AOBOB的位置,你能发的位置,你能发现哪些等量关系?为什么?现哪些等量关系?为什么?根据旋转的性质,将圆心角根据旋转的性质,将圆心角AOB绕圆心绕圆心O旋转到旋转到AOB的位置时,显然的位置时,显然AOBAOB,射线,射线OA与与OA重合,重合,OB与与OB重合而同圆的半径相等,重合而同圆的半径相等,OA=OA,OB=OB,从而点,从而点A与与A重合,重合,B与与B重合重合OABOA

3、BABAB三、探究三、探究因此,因此,弧弧AB与弧与弧A1B1 重合,重合,AB与与AB重合重合ABA1B1=这样,我们就得到下面的定理:这样,我们就得到下面的定理:定理定理 OAABB圆心角定理圆心角定理:相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,所对的弦相等,所对的弦相等,所对弦的弦心距也相等。所对弦的弦心距也相等。在同圆或等圆中,在同圆或等圆中,D D弦弦AB和弦和弦AB 对应的弦对应的弦心距有什么关心距有什么关系?系?由条件由条件:AOB=AOBAB=ABAB=AB OD=OD可可推出推出如图如图:AOBCOD,那么那么 吗吗?AB=CD OEF思考思考:OAABB圆心角定理

4、圆心角定理:相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,所对的弦相等,所对的弦相等,所对弦的弦心距也相等。所对弦的弦心距也相等。在同圆或等圆中,在同圆或等圆中,D D由条件由条件:AOB=AOBAB=ABAB=AB OD=OD可可推出推出在同圆或等圆中在同圆或等圆中如果弦相等如果弦相等那么那么弦所对的圆心角相等弦所对的圆心角相等弦所对的弧相等弦所对的弧相等弦的弦心距相等弦的弦心距相等在同圆或等圆中在同圆或等圆中如果弦心距相等如果弦心距相等那么那么弦心距所对应的圆心角相等弦心距所对应的圆心角相等弦心距所对应的弧相等弦心距所对应的弧相等弦心距所对应的弦相等弦心距所对应的弦相等在同圆或等圆中

5、在同圆或等圆中如果弧相等如果弧相等那么那么弧所对的圆心角相等弧所对的圆心角相等弧所对的弦相等弧所对的弦相等弧所对的弦的弦心距相等弧所对的弦的弦心距相等延伸延伸 圆心角定理及推论整体理解:圆心角定理及推论整体理解:圆心角定理及推论整体理解:圆心角定理及推论整体理解:(1)圆心角圆心角(2)弧弧(3)弦弦(4)弦心距弦心距知知一一得得三三OAAB B1、已知:如图,、已知:如图,AB、CD是是 O的两条弦,的两条弦,OE、OF为为AB、CD的弦心距,根据本节定理及推论填空:的弦心距,根据本节定理及推论填空:(1)如果)如果AB=CD,那么那么 _,_,_。(2)如果)如果OE=OF,那么那么 _,

6、_,_。(3)如果)如果AB=CD 那么那么 _,_,_。(4)如果)如果AOB=COD,那么那么 _,_,_。AOB=COD OE=OF AB=CDAOB=COD AB=CD AB=CDAOB=COD AB=CD OE=OFOE=OF AB=CD AB=CD 证明:证明:AB=AC AB=ACAB=AC,ABC ABC 等腰三角形等腰三角形又又ACB=60,ABC是等边三角形,是等边三角形,AB=BC=CA.AOBBOCAOC.ABCO五、例题五、例题例例1 如图在如图在 O中,中,AB=AC ,ACB=60,求证求证:AOB=BOC=AOC.判断:判断:1、等弦所对的弧相等。、等弦所对的弧

7、相等。()2、等弧所对的弦相等。、等弧所对的弦相等。()3、圆心角相等,所对的弦相等。、圆心角相等,所对的弦相等。()4、弦相等,所对的圆心角相等。(、弦相等,所对的圆心角相等。()2.如图,如图,AB是是 O的直径,的直径,,COD=35,求求AOE的度数的度数AOBCDE解:解:BCCD=DEBCCD=DEOABCD如图,如图,AC与与BD为为 O的两条互的两条互 相垂直的直径相垂直的直径.求证:求证:AB=BC=CD=DA;AB=BC=CD=DA.AB=BC=CD=DA 证明证明:AC与与BD为为 O的两条互相垂直的直径的两条互相垂直的直径,AOB=BOC=COD=DOA=90AB=BC

8、=CD=DA(圆心角定理圆心角定理)点此继续知识延伸知识延伸2、如、如 图,已知图,已知AB、CD为为 的两条弦,的两条弦,求证求证ABCD.AD=BC O随堂训练随堂训练3、如图,、如图,BC为为 O的直径,的直径,OA是是 O的的半径,弦半径,弦BEOA。求证:求证:AC=AE 圆心角定理的应用圆心角定理的应用圆心角定理圆心角定理圆心角的定义圆心角的定义学生练习学生练习圆的旋转不变性圆的旋转不变性1弧弧n1n弧弧把圆心角等分成把圆心角等分成360份份,则每一份的圆心则每一份的圆心角是角是1.同时整个圆也被分成了同时整个圆也被分成了360360份份.则每一份这样的弧叫做则每一份这样的弧叫做1

9、的弧的弧.这样这样,1,1的圆心角对着的圆心角对着1 1的弧的弧,1 1的弧对着的弧对着1 1的圆心角的圆心角.n n 的圆心角对着的圆心角对着n n的弧的弧,n n 的弧对着的弧对着n n的圆心角的圆心角.性质性质:弧的度数和它所对圆心角的度数相等弧的度数和它所对圆心角的度数相等.小结(2)所对的圆心角和所对的圆心角和 所对的圆所对的圆 心角相等心角相等在两个圆中,分别有在两个圆中,分别有 ,若若 的的度数和度数和 相等,则有相等,则有(1)和和 相等相等判断判断1.在半径相等的在半径相等的 O和和 O 中中,AB和和A B 所对的圆心所对的圆心 角都是角都是60.(1)AB和和A B各是多

10、少度各是多少度?(2)AB和和A B 相等吗相等吗?(3)在同圆或等圆中在同圆或等圆中,度数相度的弧相等度数相度的弧相等.为什么为什么?2.若把圆若把圆5等分等分,那么每一份弧是多少度那么每一份弧是多少度?若把圆若把圆8等分等分,那那么么 每一份弧是多少度每一份弧是多少度?3.圆心到弦的距离叫做这条弦的圆心到弦的距离叫做这条弦的弦心距弦心距.求证求证:在同圆在同圆或等圆中或等圆中,相等的圆心角所对的弦的弦心距相等相等的圆心角所对的弦的弦心距相等.结束试一试试一试例例2 2:如图,在:如图,在O O中,弦中,弦ABAB所对的劣弧为圆的所对的劣弧为圆的 ,圆的半径为,圆的半径为4cm4cm,求求ABAB的长的长OABC

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁