《第十一册圆柱的体积公开课【优秀6篇】.docx》由会员分享,可在线阅读,更多相关《第十一册圆柱的体积公开课【优秀6篇】.docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第十一册圆柱的体积公开课【优秀6篇】圆柱的体积数学教案 篇一 尊敬的各位领导、老师: 大家好!今天,我说课的内容是北师大版小学数学六年级下册圆柱的体积。 一、 把握教材,目标定位 圆柱的体积是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为: 1、知识与能力: 通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念
2、,培养学生判断、推理的能力和迁移能力。 2、过程与方法: 结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。 3、情感、态度、价值观: 感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。 教学的重点和难点: 由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。 二、 把握学情,选择教法 (一)学情分析 六年级的学生已经有了较丰富的生活经验,这
3、些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。 (二)、选择教法,实践课题。 新课程标准指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态
4、,采取“引导合作自主探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。 三、 教学策略的选择。 现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知形成表象进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。 四、基于以上构想,我确定本节
5、课的教学程序为: 教师活动: 创设情境 协作指导 拓展延伸 学生活动: 操作感悟 自主探究 实践应用 具体为三个环节进行教学: 1 直观演示,操作发现 让学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。 2 巧设疑问,体现两“主” 教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪
6、学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。 3 运用迁移,深化提高 运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。 现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。 本节课的教学,使学生掌握一些基本的学习方法 1 学会通过观察、比较、推理能概括出圆柱体积的推导过程。 2 学会利用旧知转化成新知,解决新问题的能力。 3 学
7、会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。 具体教学程序: (一)、情景引入: 1、复习: 大家还记得长方体、正方体的体积怎样求吗?让学生说出公式。出示圆柱形水杯。(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的? (2)你能想办法计算出这些水的体积吗? (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。 2、创设问题情景。 如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板
8、书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。 (二)、新课教学: 设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆
9、柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。 根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示观察操作比较归纳推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。 关于难点的突破,我主要从以下几个方面着手: (1) 引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面
10、积和高有关。 (2) 运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。 (3) 充分(白话文)利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。 (4) 根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。 3 运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出: (1)单位要统一 (2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力
11、,同时把所学知识转化为相应的技能。 (三)巩固练习,检验目标 1练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。 2完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。 3变式练习:已知圆柱的体积、底面积,求圆柱的高。 这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。 4动手实践:让学生测量自带的圆柱体。 教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的? 这道题的设计,一方面培养了学生解决实
12、际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。 (四)总结全课,深化教学目标 结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。 板书设计: 圆柱的体积 长方
13、体的体积=(长宽)高 圆柱体的体积=底面积 高 V = S h 本节课我采用的是图示式板书,这样能让学生清楚地看出圆柱体积公式的推导过程,以及两个形体间的密切联系,同时便于学生对于公式的记忆和理解。 五、教学效果预测: 新课程标准认为:“数学教学是师生交往、互动与共同发展的过程,教师是课堂气氛的调节者”。本节课我始终注意以人为本,从学生的兴趣出发,通过动手实践、自主探究、自主发现、使学生充分地理解、掌握圆柱体体积公式的推导过程,并熟练地加以运用。总之,本节课的设计,我遵循小学生的认知规律,由直观到抽象,由感性到理性,采用分组讨论,合作学习等形式,让学生参与教学全过程,增强了学生的主人翁意识。并
14、用计算机多媒体教学辅助教学,激发了学生的学习兴趣,提高了教学效率与效益。在圆满的同时,我也觉得会有一些可能出现问题的地方:比如,在具体的运用、实践中一定要注意和圆柱的表面积加以区别,这一点我在实际的教学中会多加以指导和训练。 以上是我圆柱的体积的说课设计,谢谢大家! 圆柱的体积数学教学设计 篇二 教学内容: 人教版九年义务教育六年制小学数学(第十二册)圆柱体积。 教学目标: 1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。 2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。 3、
15、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。 教学重点: 掌握和运用圆柱体积计算公式。 教学难点: 圆柱体积计算公式的推导过程。 教学过程 一、情景引入 1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么? 2、提问:“能用一句话说说什么是圆柱的体积吗?” (学生互相讨论后汇报,教师设疑) 二、自主探究 1、比较大小、探究圆柱的体积与哪些要素有关。 (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大? (2)、提问:“要比
16、较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。 (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示) (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。 2、大胆猜想,感知体积公式,确定探究目标。 (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。 (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。 (3)、让学生思考:怎样计算圆柱的体积呢,依据学
17、过的知识,你可以做出怎样的假设? (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。 (5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示) 4、确定方法,探究实验,验证体积公式。 (1)、首先要求学生利用实验工具,自主商讨确定研究方法。 (2)、学生通过讨论交流确定了两种验证方案。 方案一:将圆柱c放入水中,验证圆柱c的体积。 方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。 (3)、学生按照自己所设想的方案动手实
18、验,并记录有关数据,填入实验报告2中。 (4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么? (5)、学生汇报:实验的结果与猜想的结果基本相同。 (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。 (7)、小结: 要想求出一个圆柱的体积,需要知道什么条件? (8)、学生自学第8页例4上面的一段话:用字母表示公式。 学生反馈自学情况: v=sh 三、巩固发展 1、课件出示例4,学生独立完成。 指名说说这样列式的依据是什么。 2、巩固反馈 3、完成第9页的“试一试”和练一练”中的两
19、道题。 (“练一练”只列式,不计算) 集体订正,说一说圆柱体的体积还可以怎样算? 4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积? 5、拓展练习 (1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数) (2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少? 四、全课小结 谈谈这节课你有哪些收获。 圆柱的体积数学教案 篇三 教学内容:
20、 教材第1012页圆柱的体积公式,例1、例2和练一练,练习二第15题。 教学要求: 1、使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。 2、培养学生初步的空间观念和思维能力;让学生认识转化的思考方法。 教具准备: 圆柱体积演示教具。 教学重点: 理解和掌握圆柱的体积计算公式。 教学难点: 圆柱体积计算公式的推导。 教学过程: 一、铺垫孕伏: 1求下面各圆的面积(回答)。 (1)r=1厘米; (2)d=4分米; (3)C=6.28米。 要求说出解题思路。 2想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方
21、形。这个长方形的面积就是圆的面积。 3提问:什么叫体积?常用的体积单位有哪些? 4已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积高) 二、自主研究: 1根据学过的体积概念,说说什么是圆柱的体积。(板书课题) 2怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。 3公式推导。(可分小组进行) (1)请同学指出圆柱体的底面积和高。 (2)回顾圆面积公式的推导。(切拼转化) (3)探索求圆柱体积的公式。 根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化
22、的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。 (4)讨论并得出结果。 你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底
23、面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积高)用字母表示: 。(板书:V=Sh) (5)小结。 圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件? 4教学例1。 出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位) 0.9米=90厘米 2490=2160(立方厘米) 5做练习二第1题。 让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的? 6教学试一试一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲
24、试一试小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。 7、 教学例2。 出示例2,审题。小组讨论计算方法,然后学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位,结果保留整数。) 圆柱的体积数学教案 篇四 教学目标 1理解圆柱体体积公式的推导过程,掌握计算公式 2会运用公式计算圆柱的体积 教学重点 圆柱体体积的计算 教学难点 理解圆柱体体积公式的推导过程 教学过程 一、复习准备 (一)教师提问 1什么叫体积?怎样求长方体的体积? 2圆的
25、面积公式是什么? 3圆的面积公式是怎样推导的? (二)谈话导入 同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题(板书:圆柱的体积) 二、新授教学 (一)教学圆柱体的体积公式(演示动画“圆柱体的体积1”) 1教师演示 把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体 2学生利用学具操作 3启发学生思考、讨论: (1)圆柱体切开后可以拼成一个什么形体?(近似的长方体) (2)通过刚才的实验你发现了
26、什么? 拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了 拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化 近似长方体的高就是圆柱的高,没有变化 4学生根据圆的面积公式推导过程,进行猜想 (1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样? (2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样? (3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样? 5启发学生说出通过以上的观察,发现了什么? (1)平均分的份数越多,拼起来的形体越近似于长方体 (2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体
27、的长就越近似于一条线段,这样整个形体就越近似于长方体 6推导圆柱的体积公式 (1)学生分组讨论:圆柱体的体积怎样计算? (2)学生汇报讨论结果,并说明理由 因为长方体的体积等于底面积乘高(板书:长方体的体积底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高(板书:圆柱的体积底面积高) (3)用字母表示圆柱的体积公式(板书:VSh) (二)教学例4 1出示例4 例4一根圆柱形钢材,底面积是50平方厘米,高是2。1米,它的体积是多少? 2。1米210厘米 50210
28、10500(立方厘米) 答:它的体积是10500立方厘米 2反馈练习 (1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少? (2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少? (三)教学例5 1出示例5 例5一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米? 水桶的底面积: 3。14 3。14100 314(平方厘米) 水桶的容积: 31425 7850(立方厘米) 7。8(立方分米) 答:这个水桶的容积大约是7。8立方分米 三、课堂小结 通过本节课的学习,你有什么收获? 1圆柱体体积公式的推导方法 2公式的应用
29、四、课堂练习 (一)填表 底面积S(平方米)15 高h(米)3 圆柱的体积V(立方米)6.4 (二)求下面各圆柱的体积 (三)一个圆柱形水池,半径是10米,深1。5米这个水池占地面积是多少?水池的容积是多少立方米? 五、课后作业 (一)求下列图形的表面积和体积(图中单位:厘米) (二)两个底面积相等的圆柱,一个圆柱的高为4。5分米,体积为81立方分米另一个圆柱的高为3分米,体积是多少? 六、板书设计 圆柱的体积教学设计 篇五 教学目标: 1、知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。 2、方法与过程:经历猜测
30、、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。 3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。 教学重点和难点: 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。 教具: 圆柱的体积公式演示教具,圆柱的体积公式演示课件 教学过程: 一、教学回顾 1、交代任务:这节课我们来学习圆柱的体积。 2、回忆导入 (1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的? (2)、我们都学过那些立体图形的体积公式。 二、积极参与探究感
31、受 1、猜测圆柱的体积和那些条件有关。(电脑演示) 2、。探究推导圆柱的体积计算公式。 小组合作讨论: (1)将圆柱体切割拼成我们学过的什么立体图形? (2)切拼前后的两个物体什么变了?什么没变? (3)切拼前后的两个物体有什么联系? 课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。) 圆柱的体积=底面积高字母公式是V=Sh(
32、板书公式) 2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少? 3、要用这个公式计算圆柱的体积必须知道什么条件? 三、练习 1、填空 (1)、圆柱体通过切拼转化成近似的( )体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于 (),所以,圆柱体的体积等于()用字母表示 ( ) 。 (2)、底面积是10平方米,高是2米,体积是 ( )。 (3)、底面半径是2分米,高是5分米,体积是 ( )。 2讨论: (1)已知圆柱底面的半径和高,怎样求圆柱的体积 V=兀r2 h (2)已知圆柱底面的直径和高,怎样求圆柱的体积 V=兀(d
33、2)2h (3)已知圆柱底面的周长和高,怎样求圆柱的体积 V=兀(C兀2) h 3、练习:已知半径和高求体积,已知直径和高求体积。 四、小结或质疑 五、作业 课后做一做第1、2、3题。 板书设计: 圆柱的体积 长方体的体积=底面积x高 圆柱的体积=底面积x高 V=Sh 本节课的设计思考: 一、让学生在现实情境中体验和理解数学 课程标准指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装
34、在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。 二、鼓励学生独立思考,引导学生自主探索、合作交流 数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是课程标准所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生
35、独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识公式)。不足之处: 在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适
36、当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对
37、科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。 三、教师的语言非常贫乏 在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确
38、,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。 苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术 是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。 圆柱的体
39、积教案 篇六 新课程观强调: 教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地用教材,而不是简单地教教材。在实际教学中,如何落实这一理念?本人结合圆柱的体积一课谈谈自己的实践与思考。 片段一 师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少? 由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答: 1.5米=150厘米 201150=3000(立方厘米) 师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现: 20平方厘米=0.0
40、02平方米 0.00211.5=0.003(立方米) 20平方厘米=0.2平方分米 1.5米=15分米 0.2115=3(立方分米) 师:为什么会出现三种结果? 经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。 片断二 巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合呈现给学生这样一个表格(表2)。 表 1 表2 学生填表后,师:观察前两组数据,你想说什么? 学生独立思考后再小组交流,最后汇报。 生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。 生2:两个圆柱的高相等,底面积越大,体积就越大。 师:观察后两组数据,你想说什么? 有了前面的基础,学
41、生很容易说出了后两组的关系。 学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元比例的教学作了提前孕伏。 片段三 教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克? 学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。 师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。 教学反思 精心研究教材是用好教材的基础 教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。
42、但由于受时间与地域的影响,我们在执行教材时不能把它作为一种枷锁,而应作为跳板编者意图与学生实际的跳板。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。 1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。片段一 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会从不同的角度去考虑问题,将得到不同的结果的道理,从而学会多角度考虑问题,提高解决问题的能力。 2、找出知识联系
43、,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。片断二的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为比例的教学作了提前孕伏。走出了数学教学的只见树木,不见森林的点教学的误区。 落实课标理念是用好教材的关键 能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能
44、符合新理念。前两个片段就突破了学科中心和知识中心,走向了学生中心。片断三在教材关注学生的基础上向深层发展不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。 学生获得发展是用好教材的标准 有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质一切为了每一位学生的发展。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,以本为本,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。29