《spss析因设计PPT课件.ppt》由会员分享,可在线阅读,更多相关《spss析因设计PPT课件.ppt(50页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第11 章多因素实验的方差分析.方法:方差分析(F 检验)目的:研究多个(包括两个)处理因素对试验对象的试验指标的作用 资料:处理因素分几个水平(非定量),试验指标定量 结果:应用:.FactorialdesignANOV A 析因设计的方差分析.一、析因设计二、析因设计的方差分析(一)两因素两水平(二)两因素三水平(三)三因素多水平.实例实例11:甲乙两药治疗高胆固醇血症的疗效(胆固:甲乙两药治疗高胆固醇血症的疗效(胆固醇降低值醇降低值mgmg),问),问甲乙两药是否有降低胆固甲乙两药是否有降低胆固醇的作用?醇的作用?两种药间有无交互作用两种药间有无交互作用完全随机的两因素22析因设计甲药
2、乙药 用 不用用 64 56 78 44 80 42不用 28 16 31 25 23 18.实例实例22:小鼠种别:小鼠种别AA、体重、体重BB和性别和性别CC对皮内移植对皮内移植SRSSRS瘤瘤细胞生长特征影响的结果(肿瘤体积细胞生长特征影响的结果(肿瘤体积cmcm33)问)问AA、BB、CC各自的主效应如何?各自的主效应如何?三者间有无交互作用?三者间有无交互作用?完全随机的三因素222析因设计.实例实例33:研究小鼠在不同注射剂量和不同注射频次下:研究小鼠在不同注射剂量和不同注射频次下药剂药剂ACTHACTH对尿总酸度的影响。问对尿总酸度的影响。问AA、BB各自的主效应各自的主效应如何
3、?如何?二者间有无交互作用?二者间有无交互作用?随机配伍的两因素32析因设计.显著特征每 个 处 理 是 各 因 素 各 水 平 的 一 种 组 合,总 处 理 数 为各 因 素 各 水 平 的 全 面 组 合 数,即 各 因 素 各 水 平 数 的 乘 积。如 两 因 素 析 因 设 计,设A 因 素 有I 个 水 平,B 因 素 有J个 水平,则 总 处 理 数G=IJ。在 三 个 因 素 的 析 因 设 计 中,若各因素水平为I、J、K,则总处理数G=IJK。要 求 各 个 处 理 组 内 的 实 验 单 位 数 相 等(便 于 手 工 计算)且 每 组 至 少 有 两 个 实 验 单
4、位,否 则 无 法 分 析 因 素 间的交互作用,故总的实验单位数至少为2G。.2.实验设计 各因素各水平的全面组合 设有k 个因素,每个因素有L1,L2,Lk个水平,那么共有g=L1L2Lk个处理组。例如有三个因素,分别是A,B,C。A 因素有2 水平,B 因素有3 水平,C 因素有2 水平,则处理组 g=232=12 个 确定了处理组数后,将实验对象分配到各组的方法可以采用完全随机设计、随机区组设计或拉丁方设计.析因设计(Factorial Design)是一种多因素多水平交叉分组进行全面试验的设计方法。它可以研究两个或两个以上因素多个水平的效应。在析因设计中,研究因素的所有可能的水平组合
5、都能被研究到。例如4 个因素同时进行实验,每个因素取两个水平,实验的总组合数为24=16;如果水平为3,则有34=81 种组合数。即是这81 种组合均进行实验。所以析因设计可以分析观测指标与研究因素间的复杂关系,包括各因素间的交互作用(Interaction)。.3.析因设计的特点2 个以上(处理)因素(factor)(分类变量)2 个以上水平(level)2 个以上重复(repeat)每次试验涉及全部因素,即因素同时施加 观察指标(观测值)为计量资料(独立、正态、等方差).4.析因设计的有关术语 单独效应(simple effects):其它因素(factor)的水平(level)固定为某一
6、值时,某一因素的效应。即其他因素的水平固定时,同一因素不同水平间的差别。主效应(main effects):某因素各单独效应的平均效应。某一因素各水平间的平均差别。交互作用(Interaction):某一因素的各个单独效应随着另一因素变化而变化的情况。(如一级交互作用AB、二级交互作用ABC).如果不存在交互效应,则只需考虑各因素的主效应。在方差分析中,如果存在交互效应,解释结果时,要逐一分析各因素的单独效应,找出最优搭配。在两因素析因设计时,只需考虑一阶交互效应。三因素以上时,除一阶交互效应外,还需考虑二阶、三阶等高阶交互效应,解释将更复杂。(A+B)=A+B+AB(A+B+C)=A+B+C
7、+AB+AC+BC+ABC.5.析因设计的优缺点 优点:比单处理因素设计能提供更多的试验信息,可用来分析全部因素主效应,以及因素间各级的交互作用,在医学上可用于筛选最佳治疗方案、药物配方、实验条件等研究。缺点:当因素增加时,实验组数呈几何倍数增加,所需试验的次数很多。不但计算复杂,不但计算复杂,而且给众多交互作用的解释带来困难。因此,当因素及水平 而且给众多交互作用的解释带来困难。因此,当因素及水平数较多时,一般不采用完全交叉分组的析因设计,而采用正 数较多时,一般不采用完全交叉分组的析因设计,而采用正交设计 交设计。.(一)两因素两水平(22)完全随机析因设计的方差分析.A 缝合方法 外膜缝
8、合(a1)束膜缝合(a2)合计B 缝合后时间 1月b1 2月b2 1月b1 2月b210 30 10 5010 30 20 5040 70 30 7050 60 50 6010 30 30 30 24 44 28 52 120 220 140 260 7404400 11200 4800 14400 34800例例11-111-1:研究不同缝合方法及缝合后时间对家兔:研究不同缝合方法及缝合后时间对家兔轴突通过率()的影响,问轴突通过率()的影响,问两种缝合方法间两种缝合方法间有无差别?缝合后时间长短间有无差别?有无差别?缝合后时间长短间有无差别?两者两者间有无交互作用间有无交互作用.A因素(2
9、水平)缝合方法 B因素(2水平)缝合后时间缝合后1月 b1缝合后2月 b2外膜缝合a1 24(a1b1)44(a1b2)束膜缝合a2 28(a2b1)52(a2b2)2 因素2 水平析因实验示意图.表表 22因素因素22水平析因试验的均数差别水平析因试验的均数差别 B 因素平均 b2b1 b1b2 a124443420 a228 5240 24平均26 48 22a2a14 86A 因素在a1b1、a1b2、a2b1 和a2b2 的四种处理组合中,每个格子均有5个数据,因此它又是重复数相等的析因设计。由于数据按因素A 和因素B 两个方向交叉分组,故可用双向方差分析。进一步分析处理的单独效应(s
10、impleeffect)、主效应(maineffect)和交互效应(interaction)。.单独效应:其他因素的水平固定时,同一因素不同水平间的差别 A因素缝合方法 B因素 缝合后时间 平均 B单独效应1月(b1)2月(b2)(b2b1)外膜(a1)24 44 34 20束膜(a2)28 52 40 24平均 26 48 22A单独效应(a2a1)4 8 6 表2-2 22析因设计均数差别分析.析因试验的均数差别 b 因素平均 b2b1b1b2a124443420a228524024平均264822a2a1486a因素a因素单独效应:比较缝合后两个时间点的轴突通过率a(b1固定)=(a2-
11、a1)=28-24=4 a(b2 固定)=(a2-a1)=52-44=8b 因素单独效应:b(a1 固定)=(b2-b1)=20b(a2 固定)=(b2-b1)=24.主效应:某一因素各水平间的平均差别A因素的主效应解释为:束膜缝合与外膜缝合相比(不考虑缝合时间),神经轴突通过率提高了6%(40-34)。B因素的主效应解释为:缝合后2月与1月相比(不考虑缝合方法),神经轴突通过率提高了22%(48-26)。A因素缝合方法 B因素 缝合后时间 平均 B主效应1月(b1)2月(b2)外膜(a1)24 44 34 束膜(a2)28 52 40平均 26 48 22A主效应 62(交互作用).交互作用
12、(interaction):当某因素的各个单独效应随另一因素水平的变化而变化,且相互间的差别超出随机波动范围时,则称这两个因素间存在交互作用。若某因素不同水平间的单独效应差因另一因素水平的影响呈较大幅度增加,并且差别有统计学意义,可认为两因素有协同交互作用;若某因素不同水平间的单独效应差因另一因素水平的影响呈较大幅度下降,并且差别有统计学意义,可认为两因素有拮抗交互作用。.交互作用 统计分析时,若存在交互作用,须逐一分析各因素的单独效应。反之如果不存在交互作用,则两因素的作用相互独立,分析某一因素的作用只需考察该因素的主效应。两因素的交互作用称为一阶交互作用,当因素个数大于2时,可计算二阶交互
13、作用、三阶交互作用,。.A1A210304050B1B2B1B2两因素无交互作用反应值20.A1A210204050B1B2B2B1两因素有交互作用,为拮抗作用反应值30.析因试验的均数差别 b 因素平均 b2b1b1b2a124443420a228524024平均264822a2a1486a因素本例考察的交互作用为不同的缝合方法是否影响两个时间点家兔的轴突通过率。ab 交互作用(2420)4?当某因素的各个单独效应随另一因素水平的变化而变化,且相互间的差别超出随机波动范围时,则称这两个因素间存在交互作用。.交互作用 缝合后2月后束膜缝合与外膜缝合神经轴突通过率的差异,仅比缝合后1月提高了2%
14、,两条直线相互平行,表示两因素交互作用很小.ANOV A 分析的必要性 A因素(缝合方法)的主效应为6%,B因素(缝合时间)的主效应为22%,AB的交互作用为2%。以上都是样本均数的比较结果,要推论总体均数是否有同样的特征,需要对试验结果进行方差分析后下结论。.H0:两种缝合方式间轴突通过率相同 H1:两种缝合方式间轴突通过率不同 H0:不同时间轴突通过率相同 H1:不同时间轴突通过率不同 H0:缝合方式与时间存在交互作用 H1:缝合方式与时间不存在交互作用 0.05.22析因设计方差分析时变异分解及计算 变异分解 A 因素(不同方法+误差)B 因素(不同时间+误差)AB 因素(AB 交互+误
15、差)误差变异(随机因素+未知因素)处理组变异总变异.SS处理的析因分解.2.2.处理间离均差平方和处理间离均差平方和3.A3.A因素离均差平方和因素离均差平方和1.1.总离均差平方和总离均差平方和SS 估计量的计算方法:A.4.B4.B因素离均差平方和因素离均差平方和5.AB5.AB交互作用交互作用6.6.误差离均差平方和误差离均差平方和.析因分析结果.两因素方差分析的分析策略小结:1 先做两因素方差分析确定是否有交互作用;2 如果没有交互作用,看主效应的差别是否有统计学意义:若有统计学意义,考察相应的样本均数,确定哪种情况的均数高。3 如果有交互作用,则不能分析主效应。而化为单因素的方差分析
16、(组数为各个因素的水平数之和),作两两比较。4 在有交互作用的情况下,通过计算样本均数确认交互作用为协同作用还是拮抗作用。.如果有交互作用,则:两个药都用的均数A药的均数B药的均数两个药都未用的均数,则称协同作用。两个药都用的均数A药的均数B药的均数两个药都未用的均数,则称拮抗作用。.A、B因素.(二)两因素多水平完全随机析因设计的方差分析.例11-2 观察A,B 两种镇痛药物联合运用在产妇分娩时的镇痛效果。A 药取3个剂量:1.0m,2.5mg,5.0mg;B 药也取3个剂量:5g,15g,30g。共9个处理组。将27名产妇随机等分为9组,每组3名产妇,记录每名产妇分娩时的镇痛时间。分析A,B 两药联合运用的镇痛效果。两种药物联合镇痛效果研究.例11-2:观察A、B 两药联合应用在产妇分娩时的镇痛时间(min)完全随机的两因素33析因设计.完全随机的两因素析因设计方差分析表.A、B 两药联合运用的镇痛时间方差分析结果表.DRUGA.DRUGB.感谢亲观看此幻灯片,此课件部分内容来源于网络,如有侵权请及时联系我们删除,谢谢配合!