利用角平分线构造全等三角形精.ppt

上传人:石*** 文档编号:91233473 上传时间:2023-05-24 格式:PPT 页数:12 大小:1.38MB
返回 下载 相关 举报
利用角平分线构造全等三角形精.ppt_第1页
第1页 / 共12页
利用角平分线构造全等三角形精.ppt_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《利用角平分线构造全等三角形精.ppt》由会员分享,可在线阅读,更多相关《利用角平分线构造全等三角形精.ppt(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、利用角平分线构造全等三角形第1页,本讲稿共12页如何利用三角形的中线来构造全等三角形?如何利用三角形的中线来构造全等三角形?复习:复习:可可以以利利用用倍倍长长中中线线法法,即即把把中中线线延长一倍,来构造全等三角形。延长一倍,来构造全等三角形。如图,若如图,若AD为为ABC的中线,的中线,必有结论必有结论:ABCDE12 延长延长AD到到E,使,使DE=AD,连,连结结BE(也可连结(也可连结CE)。)。ABDECD,1=E,B=2,EC=AB,CEAB。第2页,本讲稿共12页 可以利用角平分线所在直可以利用角平分线所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构造全

2、等三角形。如何利用三角形的角平分线来构造如何利用三角形的角平分线来构造全等三角形?全等三角形?问题:问题:如图,在如图,在ABC中,中,AD平分平分BAC。方法一:方法一:ABCDE必有结论:必有结论:在在AB上上截截取取AE=AC,连结连结DE。ADEADC。ED=CD,3 3*2 21 1AED=C,ADE=ADC。第3页,本讲稿共12页方法二:方法二:ABCDF延延 长长 AC到到F,使使AF=AB,连结,连结DF。必有结论:必有结论:ABDAFD。BD=FD,如何利用三角形的角平分线来构造如何利用三角形的角平分线来构造全等三角形?全等三角形?问题:问题:3 3*2 21 1 如图,在如

3、图,在ABC中,中,AD平分平分BAC。可以利用角平分线所在直可以利用角平分线所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构造全等三角形。B=F,ADB=ADF。第4页,本讲稿共12页 如何利用三角形的角平分线来构造如何利用三角形的角平分线来构造全等三角形?全等三角形?问题:问题:ABCDMN方法三:方法三:作作DMAB于于M,DNAC于于N。必有结论:必有结论:AMDAND。DM=DN,3 3*2 21 1 如图,在如图,在ABC中,中,AD平分平分BAC。可以利用角平分线所在直可以利用角平分线所在直线作对称轴,翻折三角形来线作对称轴,翻折三角形来构造全等三角形。构

4、造全等三角形。AM=AN,ADM=AND。(还可以用(还可以用“角平分线上的点到角的两边距离相角平分线上的点到角的两边距离相等等”来证来证DM=DN)第5页,本讲稿共12页证明证明:例题例题已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的角平的角平分线,分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCE在在BC上截取上截取BE,使,使BE=AB,连结,连结DE。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在ABD和和EBD中中 AB=EB(已知)(已知)1=2(已证)(已证)B

5、D=BD(公共边)(公共边)ABDEBD(S.A.S)1243 3+4180(平角定义),(平角定义),A3(已证)(已证)A+C180 (等量代换)(等量代换)3 32 21 1*A3(全等三角形的对应角相等)(全等三角形的对应角相等)AD=CD(已知),(已知),AD=DE(已证)(已证)DE=DC(等量代换)(等量代换)4=C(等边对等角)(等边对等角)AD=DE(全等三角形的对应边相等)(全等三角形的对应边相等)第6页,本讲稿共12页证明证明:例题例题已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的角平的角平分线,分线,AD=CDAD=CD,求

6、证:,求证:A+C=180A+C=180DABCF延长延长BA到到F,使,使BF=BC,连结,连结DF。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在BFD和和BCD中中 BF=BC(已知)(已知)1=2(已证)(已证)BD=BD(公共边)(公共边)BFDBCD(S.A.S)1243 FC(已证)(已证)4=C(等量代换)(等量代换)3 32 21 1*FC(全等三角形的对应角相等)(全等三角形的对应角相等)AD=CD(已知),(已知),DF=DC(已证)(已证)DF=AD(等量代换)(等量代换)4=F(等边对等角)(等边对等角)3+4180 (平

7、角定义)(平角定义)A+C180 (等量代换)(等量代换)DF=DC(全等三角形的对应边相等)(全等三角形的对应边相等)第7页,本讲稿共12页证明证明:例题例题已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的角平的角平分线,分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCM作作DMBC于于M,DNBA交交BA的延长线于的延长线于N。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)DNBA,DMBC(已知)(已知)N=DMB=90(垂直的定义)(垂直的定义)在在NBD和和MBD中中 N

8、=DMB(已证)(已证)1=2(已证)(已证)BD=BD(公共边)(公共边)NBDMBD(A.A.S)12 4=C(全等三角形的对应角相等)(全等三角形的对应角相等)N433 32 21 1*ND=MD(全等三角形的对应边相等)(全等三角形的对应边相等)DNBA,DMBC(已知)(已知)NAD和和MCD是是Rt在在RtNAD和和RtMCD中中 ND=MD(已证)(已证)AD=CD(已知)(已知)RtNAD RtMCD(H.L)3+4180(平角定义),(平角定义),A3(已证)(已证)A+C180(等量代换)(等量代换)第8页,本讲稿共12页证明证明:例例1 1已知:如图,在四边形已知:如图,

9、在四边形ABCDABCD中,中,BDBD是是ABCABC的角平的角平分线,分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCM作作DMBC于于M,DNBA交交BA的延长线于的延长线于N。12N433 32 21 1*BD是是ABC的角平分线(已知)的角平分线(已知)DNBA,DMBC(已知)(已知)ND=MD(角平分线上的点到这(角平分线上的点到这 个角的两边距离相等)个角的两边距离相等)4=C (全等三角形的对应角相等)(全等三角形的对应角相等)DNBA,DMBC(已知)(已知)NAD和和MCD是是Rt在在RtNAD和和RtMCD中中 ND=MD(已证)(已证)A

10、D=CD(已知)(已知)RtNAD RtMCD(H.L)3+4180(平角定义)(平角定义)A3(已证)(已证)A+C180(等量代换)(等量代换)第9页,本讲稿共12页练习练习如图,已知如图,已知ABCABC中,中,ADAD是是BACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C=2BC=2BABCDE122 21 1证明证明:在在AB上截取上截取AE,使,使AE=AC,连结,连结DE。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在AED和和ACD中中 AE=AC(已知)(已知)1=2(已证)(已证)AD=AD(

11、公共边)(公共边)AEDACD(S.A.S)3B=4(等边对等角)(等边对等角)4*C3(全等三角形的对应角相等(全等三角形的对应角相等)又又 AB=AC+CD=AE+EB(已知)(已知)EB=DC=ED(等量代换)(等量代换)3=B+4=2B(三(三角形的一个外角等于和它不相邻角形的一个外角等于和它不相邻的两个内角和)的两个内角和)C=2B(等量代换)(等量代换)ED=CD(全等三角形的对应边相等)(全等三角形的对应边相等)第10页,本讲稿共12页练习练习如图,已知如图,已知ABCABC中,中,ADAD是是BACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C

12、=2BC=2BABCDF12证明证明:延长延长AC到到F,使,使CF=CD,连结,连结DF。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)AB=AC+CD,CF=CD(已知)(已知)AB=AC+CF=AF(等量代换)(等量代换)ACB=2F(三角形的一(三角形的一个外角等于和它不相邻的两个个外角等于和它不相邻的两个内角和)内角和)ACB=2B(等量代换)(等量代换)32 21 1*在在ABD和和AFD中中 AB=AF(已证)(已证)1=2(已证)(已证)AD=AD(公共边)(公共边)ABDAFD(S.A.S)FB(全等三角形的对应角相等)(全等三角形的

13、对应角相等)CF=CD(已知)(已知)B=3(等边对等角)(等边对等角)第11页,本讲稿共12页如何利用三角形的角平分线来构造全等三角形?如何利用三角形的角平分线来构造全等三角形?小结:小结:(3)作作DMAB于于M,DNAC于于N。(1)在在AB上上截截取取AE=AC,连连结结DE。(2)延延长长AC到到F,使使AF=AB,连结连结DF。ABCDEFMN必有结论:必有结论:ADEADC。必有结论:必有结论:ABDAFD。必有结论:必有结论:AMDAND。可以利用角平分线所在直线作对称轴,翻可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。折三角形来构造全等三角形。如如 图图,在在 ABC中中,AD为为BAC的角平分线。的角平分线。*3 30 0*第12页,本讲稿共12页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁