《构造全等三角形常见辅助线法优秀课件.ppt》由会员分享,可在线阅读,更多相关《构造全等三角形常见辅助线法优秀课件.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、构造全等三角形常见辅助线法第1页,本讲稿共26页第2页,本讲稿共26页如图如图,AB=AD,BC=DC,AB=AD,BC=DC,求证求证:B=D.:B=D.ACBD连接连接ACAC构造全等三角形构造全等三角形连连线线 构构造造全全等等第3页,本讲稿共26页连线连线 构造全等构造全等如图如图,AB,AB与与CDCD交于交于O,O,且且AB=CDAB=CD,AD=BCAD=BC,OB=5cmOB=5cm,求,求ODOD的长的长.连接连接BDBD构造全等三角形构造全等三角形ACBDO第4页,本讲稿共26页第5页,本讲稿共26页如何利用三角形的中线来构造全等三角形?如何利用三角形的中线来构造全等三角形
2、?可可以以利利用用倍倍长长中中线线法法,即即把把中中线线延延长长一倍,来构造全等三角形。一倍,来构造全等三角形。如图,若如图,若AD为为ABC的中线,的中线,必有结论必有结论:ABCDE12 延长延长AD到到E,使,使DE=AD,连结,连结BE(也可连结(也可连结CE)。)。ABDECD,1=E,B=2,EC=AB,CEAB。第6页,本讲稿共26页已知,如图已知,如图ADAD是是ABCABC的中线,的中线,ABCDE延长延长ADAD到点到点E E,使,使DE=ADE=AD D,连结连结CE.CE.思考:若思考:若AB=3,AC=5AB=3,AC=5求求ADAD的取值范围?的取值范围?倍长中线第
3、7页,本讲稿共26页第8页,本讲稿共26页已知在已知在ABC中,中,C=2 B,1=2求证求证:AB=AC+CDADBCE12在在AB上取点上取点E使得使得AE=AC,连接,连接DE截长截长F在在AC的延长线上取点的延长线上取点F使得使得CF=CD,连接,连接DF补短补短第9页,本讲稿共26页A1BCD234如图所示,已知如图所示,已知AD BC,1=2,3=4,直线,直线DC经过点经过点E交交AD于点于点D,交交BC于点于点C。求证:。求证:AD+BC=ABEF在在AB上取点上取点F使得使得AF=AD,连接连接EF截长补短第10页,本讲稿共26页证明证明:例例1 1已知:如图,在四边形已知:
4、如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的角平的角平分线,分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCE在在BC上截取上截取BE,使,使BE=AB,连结,连结DE。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在ABD和和EBD中中 AB=EB(已知)(已知)1=2(已证)(已证)BD=BD(公共边)(公共边)ABDEBD(S.A.S)1243 3+4180(平角定义),(平角定义),A3(已证)(已证)A+C180 (等量代换)(等量代换)3 32 21 1*A3(全等三角形的对应角相等)(全
5、等三角形的对应角相等)AD=CD(已知),(已知),AD=DE(已证)(已证)DE=DC(等量代换)(等量代换)4=C(等边对等角)(等边对等角)AD=DE(全等三角形的对应边相等)(全等三角形的对应边相等)第11页,本讲稿共26页证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的角平的角平分线,分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCF延长延长BA到到F,使,使BF=BC,连结,连结DF。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在BFD和和BCD
6、中中 BF=BC(已知)(已知)1=2(已证)(已证)BD=BD(公共边)(公共边)BFDBCD(S.A.S)1243 FC(已证)(已证)4=C(等量代换)(等量代换)3 32 21 1*FC(全等三角形的对应角相等)(全等三角形的对应角相等)AD=CD(已知),(已知),DF=DC(已证)(已证)DF=AD(等量代换)(等量代换)4=F(等边对等角)(等边对等角)3+4180 (平角定义)(平角定义)A+C180 (等量代换)(等量代换)DF=DC(全等三角形的对应边相等)(全等三角形的对应边相等)第12页,本讲稿共26页练习练习1 1如图,已知如图,已知ABCABC中,中,ADAD是是B
7、ACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C=2BC=2BABCDE122 21 1证明证明:在在AB上截取上截取AE,使,使AE=AC,连结,连结DE。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)在在AED和和ACD中中 AE=AC(已知)(已知)1=2(已证)(已证)AD=AD(公共边)(公共边)AEDACD(S.A.S)3B=4(等边对等角)(等边对等角)4*C3(全等三角形的对应角相等(全等三角形的对应角相等)又又 AB=AC+CD=AE+EB(已知)(已知)EB=DC=ED(等量代换)(等量代换)3=
8、B+4=2B(三(三角形的一个外角等于和它不角形的一个外角等于和它不相邻的两个内角和)相邻的两个内角和)C=2B(等量代换)(等量代换)ED=CD(全等三角形的对应边相等)(全等三角形的对应边相等)第13页,本讲稿共26页练习练习1 1如图,已知如图,已知ABCABC中,中,ADAD是是BACBAC的角平分线,的角平分线,AB=AC+CDAB=AC+CD,求证:,求证:C=2BC=2BABCDF12证明证明:延长延长AC到到F,使,使CF=CD,连结,连结DF。AD是是BAC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)AB=AC+CD,CF=CD(已知)(已知)A
9、B=AC+CF=AF(等量代换)(等量代换)ACB=2F(三角形的(三角形的一个外角等于和它不相邻的一个外角等于和它不相邻的两个内角和)两个内角和)ACB=2B(等量代换)(等量代换)32 21 1*在在ABD和和AFD中中 AB=AF(已证)(已证)1=2(已证)(已证)AD=AD(公共边)(公共边)ABDAFD(S.A.S)FB(全等三角形的对应角相等)(全等三角形的对应角相等)CF=CD(已知)(已知)B=3(等边对等角)(等边对等角)第14页,本讲稿共26页如图,已知直线如图,已知直线MNPQMNPQ,且,且AEAE平分平分BANBAN、BEBE平分平分QBAQBA,DCDC是过是过E
10、 E的任意线段,交的任意线段,交MNMN于点于点D D,交,交PQPQ于点于点C C。求证:求证:AD+AB=BCAD+AB=BC。证明证明:延长延长AEAE,交直线,交直线PQPQ于点于点F F。*3 30 0*22222121ABCDEMNPQ1234F5第15页,本讲稿共26页第16页,本讲稿共26页1.1.如图如图,ABC,ABC中中,C=90,C=90o o,AC=BC,AD,AC=BC,AD平分平分ACB,ACB,DEAB.DEAB.若若AB=6cm,AB=6cm,则则DBEDBE的周长是多少的周长是多少?.“.“周长问题周长问题”的转化的转化 借助借助“角平分线性质角平分线性质”
11、BACDEBE+BD+DEBE+BD+CDBE+BCBE+ACBE+AEAB第17页,本讲稿共26页2.2.如图如图,ABC,ABC中中,D,D在在ABAB的垂直平分线上的垂直平分线上,E E在在ACAC的垂直平分线上的垂直平分线上.若若BC=6cm,BC=6cm,求求ADEADE的周长的周长.“.“周长问题周长问题”的转化的转化 借助借助“垂直平分线性质垂直平分线性质”BACDEAD+AE+DEBD+CE+DEBC第18页,本讲稿共26页5.5.如图如图,ABC,ABC中,中,BPBP、CPCP是是ABCABC的角平分线,的角平分线,MN/BC.MN/BC.若若BC=6cm,AMNBC=6c
12、m,AMN周长为周长为13cm13cm,求,求ABCABC的周长的周长.“.“周长问题周长问题”的转化的转化 借助借助“等腰三角形性质等腰三角形性质”BACPAB+AC+BCAM+BM+AN+NC+6NAM+MP+AN+NP+613+6MAM+AN+MN+6第19页,本讲稿共26页第20页,本讲稿共26页 ABC中中,ABAC,A的平分线与的平分线与BC的的垂直平分线垂直平分线DM相交于相交于D,过,过D作作DE AB于于E,作,作DF AC于于F。求证:求证:BE=CFABCDEFM连接连接DB,DC垂垂直直平平分分线线上上点点向向两两端端连连线线段段第21页,本讲稿共26页如图,已知三角形
13、如图,已知三角形ABC中中,BC边上的垂直平边上的垂直平分线分线DE与角与角BAC的平分线交于点的平分线交于点E,EF垂垂直直AB交交AB的延长线于点的延长线于点F,EG垂直垂直AC交交AC于点于点G。求证:。求证:(1)BF=CG(2)判定判定AB+AC与与AF的关系的关系第22页,本讲稿共26页第23页,本讲稿共26页如图如图,ABC,ABC中中,C=90,C=90o o,BC=10,BD=6,BC=10,BD=6,AD AD平分平分BAC,BAC,求点求点D D到到ABAB的距离的距离.过点过点D D作作DEABDEAB于点于点E EACDBE角平分线上的点向角两边做垂线段角平分线上的点
14、向角两边做垂线段第24页,本讲稿共26页证明证明:例例1 1已知:如图,在四边形已知:如图,在四边形ABCDABCD中,中,BDBD是是ABCABC的角平的角平分线,分线,AD=CDAD=CD,求证:,求证:A+C=180A+C=180DABCM作作DMBC于于M,DNBA交交BA的延长线于的延长线于N。BD是是ABC的角平分线(已知)的角平分线(已知)1=2(角平分线定义)(角平分线定义)DNBA,DMBC(已知)(已知)N=DMB=90(垂直的定义)(垂直的定义)在在NBD和和MBD中中 N=DMB(已证)(已证)1=2(已证)(已证)BD=BD(公共边)(公共边)NBDMBD(A.A.S
15、)12 4=C(全等三角形的对应角相等)(全等三角形的对应角相等)N433 32 21 1*ND=MD(全等三角形的对应边相等)(全等三角形的对应边相等)DNBA,DMBC(已知)(已知)NAD和和MCD是是Rt在在RtNAD和和RtMCD中中 ND=MD(已证)(已证)AD=CD(已知)(已知)RtNAD RtMCD(H.L)3+4180(平角定义),(平角定义),A3(已证)(已证)A+C180(等量代换)(等量代换)第25页,本讲稿共26页PD=PE.PD=PE.PD=PEPD=PE如图如图,OC,OC 平分平分AOB,AOB,角平分线上点向两边作垂线段过点过点P P作作PFOA,PG OBPFOA,PG OB垂足为点垂足为点F,F,点点G GFGACDBEPODOE+DPE=180DOE+DPE=180DOE+DPE=180DOE+DPE=180求证求证:第26页,本讲稿共26页