《2023年整式的乘除知识点总结归纳全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年整式的乘除知识点总结归纳全面汇总归纳.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备 精品知识点 整 式 的 乘 除 知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。如:bca22的 系数为2,次数为 4,单独的一个非零数的次数是 0。2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:122xaba,项有2a、ab2、x、1,二次项为2a、ab2,一次项为x,常数项为 1,各项次数分别为 2,2,1,0,系数分别为 1,-2,1,1,叫二次四项式。3、整式:单项式和多项式统称整式。注意:凡分母含
2、有字母代数式都不是整式。也不是单项式和多项式。4、多项式按字母的升(降)幂排列:如:1223223yxyyxx 按x的升幂排列:3223221xyxxyy 按x的降幂排列:1223223yxyyxx 5、同底数幂的乘法法则:nmnmaaa(nm,都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:532)()()(bababa 6、幂的乘方法则:mnnmaa)((nm,都是正整数)幂的乘方,底数不变,指数相乘。如:10253)3(幂的乘方法则可以逆用:即mnnmmnaaa)()(如:23326)4()4(4 已知:23a,326b,求3102ab的值;7、积的乘方法
3、则:nnnbaab)((n是正整数)积的乘方,等于各因数乘方的积。如:(523)2zyx=5101555253532)()()2(zyxzyx 8、同底数幂的除法法则:nmnmaaa(nma,0都是正整数,且)nm 同底数幂相除,底数不变,指数相减。如:3334)()()(baababab 学习必备 精品知识点 9、零指数和负指数;10a,即任何不等于零的数的零次方等于 1。ppaa1(pa,0是正整数),即一个不等于零的数的p次方等于这个数的p次方的倒数。如:81)21(233 10、科学记数法:如:0.00000721=7.21610(第一个不为零的数前面有几个零就是负几次方)11、单项式
4、的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:积的系数等于各因式系数的积,先确定符号,再计算绝对值。相同字母相乘,运用同底数幂的乘法法则。只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 单项式乘法法则对于三个以上的单项式相乘同样适用。单项式乘以单项式,结果仍是一个单项式。如:xyzyx3232 12、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mcmbmacbam)(cbam,都是单项式)注意:积是一个多项式,其项数与多项式的项数相同。运算时要注意积的符号,多项式的每一
5、项都包括它前面的符号。在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。如:)(3)32(2yxyyxx 13、多项式与多项式相乘的法则;多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。如:)6)(5(2)3)(23(1xxbaba、14、平方差公式:22)(bababa注意平方差公式展开只有两项 公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。如:(a+b1)(ab+1)=。计算(2x+y-z+5)(2x-y+z+5)15、完全平方公式:2222)(bababa 公式特征:左边是
6、一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的 2 倍。注意:独的一个非零数的次数是多项式几个单项式的和叫做多项式多项式中每整式注意凡分母含有字母代数式都不是整式也不是单项式和多项式多项方法则都是正整数幂的乘方底数不变指数相乘如幂的乘方法则可以逆用学习必备 精品知识点 abbaabbaba2)(2)(2222 abbaba4)()(22 222)()()(bababa 222)()()(bababa 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的 2 倍。如:、试说明不论 x,y 取何值,代数式226415xyxy的值总是正数。、已
7、知 2()16,4,abab求223ab与2()ab的值.16、三项式的完全平方公式:bcacabcbacba222)(2222 17、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式 如:bamba242497 18、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:cbamcmmbmmammcmbmam)(方法总结:乘法与除法互为逆运算。被除式
8、=除式商式+余式 例如:已知一个多项式除以多项式243aa所得的商式是21a,余式是28a,求这个多项式。怎样熟练运用公式:(一)、明确公式的结构特征 这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方明确了公式的结构特征就能在各种情况下正确运用公式(二)、理解字母的广泛含义 乘法公式中的字母a、b可以是具体的数,也可以是单项式或多项式理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式如计算(x+2y3z)2,若视x+2y 122232442222222
9、22222.abababababababababababab 独的一个非零数的次数是多项式几个单项式的和叫做多项式多项式中每整式注意凡分母含有字母代数式都不是整式也不是单项式和多项式多项方法则都是正整数幂的乘方底数不变指数相乘如幂的乘方法则可以逆用学习必备 精品知识点 为公式中的a,3z为b,则就可用(ab)2=a22ab+b2来解了。(三)、熟悉常见的几种变化 有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点 常见的几种变化是:1、位置变化 如(3x+5y)(5y3x)交换 3x和 5y的位置后即可用平方差公式计算了 2、符号变化
10、如(2m7n)(2m7n)变为(2m+7n)(2m7n)后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)3、数字变化 如 98102,992,912等分别变为(1002)(100+2),(1001)2,(90+1)2后就能够用乘法公式加以解答了 4、系数变化 如(4m+2n)(2m4n)变为 2(2m+4n)(2m4n)后即可用平方差公式进行计算了 5、项数变化 如(x+3y+2z)(x3y+6z)变为(x+3y+4z2z)(x3y+4z+2z)后再适当分组就可以用乘法公式来解了(四)、注意公式的灵活运用 有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便如计算(a
11、2+1)2(a21)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便即原式=(a2+1)(a21)2=(a41)2=a82a4+1 对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用如计算(1221)(1231)(1241)(1291)(12101),若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题 独的一个非零数的次数是多项式几个单项式的和叫做多项式多项式中每整式注意凡分母含有字母代数式都不是整式也不是单项式和多项式多项方法则都是正整数幂的乘方底数不变指数相乘如幂的乘方法则可以逆用