《分数的基本性质教学设计方案5篇.docx》由会员分享,可在线阅读,更多相关《分数的基本性质教学设计方案5篇.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、分数的基本性质教学设计方案5篇分数的基本性质教学设计方案篇1教学目标1、使学生对数的整除的有关概念掌握得更加系统、牢固。2、进一步弄清各概念之间的联系与区别。3、使学生对最大公约数和最小公倍数的求法掌握得更加熟练。4、掌握分数、小数的基本性质。教学重点通过对主要概念进行整理和复习,深化理解,形成知识网络。教学难点弄清概念间的联系和区别,理解易混淆的概念。教学步骤一、铺垫孕伏教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录、(学生汇报讨论结果)揭示课题:在数的整除这部分知识中,有这么多的概念,那
2、么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习、二、探究新知(一)建立知识网络、【演示课件数的整除】。1、思考:哪个概念是最基本的概念?并说一说概念的内容。反馈练习:在1234、480、5、20、20、3、20、84中,被除数能除尽除数的有()个;被除数能整除除数的有()个。教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?教师说明:能除尽的不一定都能整除,但能整除的一定能除尽。2、说出与整除关系最密切的概念,并说一说概念的内容。反馈练习:下面的说法对不对,为什么?因为1553,所以15是倍数,5是约数
3、、()。因为4、622、3,所以4、6是2的倍数,2是4、6的约数、()。明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提。3、教师提问:由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容,根据一个数所含约数的个数的不同,还可以得到什么概念?互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数。4、讨论互质数与质数之间有什么区别?互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数。5、教师提问:如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的
4、什么数?只有什么数才能做质因数?什么叫做分解质因数?只有什么数才能分解质因数?6、教师提问:谁还记得,能被2、5、3整除的数各有什么特征?由一个数能不能被2整除,又可以得到什么概念?(二)比较方法。1、练习:求16和24的最大公约数和最小公倍数。2、思考:求最大公约数和最小公倍数有什么联系和区别?(三)分数、小数的基本性质。1、教师提问:分数的基本性质是什么?小数的基本性质是什么?分数的基本性质教学设计方案篇2教学目标(一)理解和掌握分数的基本性质。(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化
5、的辩证唯物主义观点。教学重点和难点(一)理解和掌握分数的基本性质。(二)归纳分数的基本性质,运用性质转化分数。教学用具教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给学具:每位同学准备三张相同的长方形纸片。教学过程设计(一)复习准备1口答:(投影片)根据12030=4,不用计算直接说出结果:(1203)(303)=();(12010)(3010)=()。2说一说依据什么可以不用计算直接得出商的?3说出商不变的性质。教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。(二)学习新课1分数基本性质。(1)教师取出一张长方形白纸,说明这为单位“1”,再
6、取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:教师:请比较这三个分数的大小?你根据什么说这三个分数相等?学生口答后老师用等号连结上面三个分数。(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分
7、子分母的变化有没有什么规律?请同学观察,思考和讨论。投影出思考题:如何?结果如何?变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)的变化规律是什么?(学生小组讨论后汇报)教师板书:教师:试说一说这时分子、分母的变化规律?学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。学生口述分数基本性质的内容,老师把板书补充完
8、整。教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。请学生打开书读两遍。教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)用学生自己的例题说明后,用投影片再说明:口答填空:(投影片)2把一个分数化成大小相等,而分子或分母是指定数的分数。分子应怎样变化?谁随着谁变?化?谁随着谁变?教师:上面两个分数的变化依据是什么?(2)口答练习(学生口答,老师板书。)教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。(三)巩固反馈1口答:(投影片)2在括号里填上“=”或“”。(投影)3在()里填上适当的数。(投影)4判断正误,并说明理由。
9、(四)课堂总结与课后作业1分数基本性质。2把分数化成大小相同而分子或分母是指定数的分数的方法。3作业:课本108页练习二十三,1,2,4,5。课堂教学设计说明分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。在整个学习过程中都是学生活动为主,这样有利于培
10、养学生观察、分析和抽象概括的能力。新课教学分为两部分。第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。板书设计分数的基本性质教学设计方案篇3一、教学目标1经历探索分数基本性质的过程,理解分数的基本性质。2能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。3经历观察、操作和讨论等学习活动,体验数学学习的
11、乐趣。二、教学重、难点教学重点是:分数的基本性质。教学难点是:对分数的基本性质的理解。三、教学方法采用了动手做一做、观察、比较、归纳和直观演示的方法四、教学过程(一)、故事引入,揭示课题1教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,
12、通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)2组织讨论。(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1428312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3468912。(3)我们班有40名同学
13、,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12242040。3引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母变化了,分数的大小不变。它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。(二)、比较归纳,揭示规律1出示思考题。比较每组分数的分子和分母:(1)从左往右看,是按照什么规律变化的?(2)从右往左看,又是按照什么规律变化的?让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。2集体讨论,归纳性质。(1)从左往右看,由34到68,分子、分母是怎么变
14、化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。板书:(2)34是怎样变化成912的呢?怎么填?学生回答后填空。(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(板书:都乘以相同的数)(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。(
15、板书:都除以)(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?(板书:零除外)(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。3出示例2:把12和1024化成分母是12而大小不变的分数。思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?4讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王
16、怎么分才公平呢?如果要五块呢?5质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。(三)、沟通说明,揭示联系通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3434(33)(43)912912(四)、多层练习,巩固深化1口答。(学生口答后,要求说出是怎样想的?)2判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)教学反思:学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探
17、究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:1、学生在故事情境中大胆猜想。通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。2、学生在自主探索中科学验证。在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动
18、探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想验证完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。3、让学生在分层练习中巩固深化。在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助
19、学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。分数的基本性质教学设计方案篇4教学目标:1、知识目标:通过教学使学生理解和掌握分数的基本性质,
20、能利用它改变分数的分子和分母,而使分数的大小不变。2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。教学准备:长方形纸片、彩笔、各种分数卡片。教学过程一、创设情境,激发兴趣1课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小
21、猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】“同学们,猴王真的分得不公平吗?”二、动手操作、导入新课同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。任选一小组的同学台前展示实验报告,并汇报结论。教师根据学生汇报板书:14=28=3122组织讨论。(1)通过操作我们
22、发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。3引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母,分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。三、比较归纳,揭示规律。请每组拿出
23、探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。1课件出示探究报告。2分组汇报,归纳性质。(1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。(根据学生回答板书:同时乘上相同的数)(2)从右往左看,分数的分子和分母又是按照什么规律变化的?(根据学生的回答板书:除以)(3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?(4)综合刚才的探究,你发现什么规律?根据学生的回答,揭示课题,(这叫做板书:分数的基本性质)对这句话你还有什么要补充的?(补充“零除外”)讨论:为什么性质中要规定“零除外”?
24、(红笔板书:零除外)(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。3、智慧眼(下列的式子是否正确?为什么?)(1)3532565(生:35的分子与分母没有同时乘以2,分数的大小改变。)(2)5125512612(生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)(3)1121312334(生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)(4)252x5x2x5
25、x(生:x在这里代表任何数,当x0时,分数的大小改变。)4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?三、回归书本,探源获知1、浏览课本第107108页的内容。2、看了书,你又有什么收获?还有什么疑问吗?3、师生答疑。你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?4、自主学习并完成例2,请二名学生说出思路。四、多层练习,巩固深化。1、热身房。35=3()5()=9()824=8()24()=()3学生口答后,要求说出是怎样想的?分数的基本性质教学设计方案篇5一、教学目标1、使学生理解和掌握分数
26、的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。3、激发学生积极主动的情感状态,体验互相合作的乐趣。二、教学重点1、理解、掌握分数的基本性质,能正确应用分数的基本性质。2、自主探究出分数的基本性质。三、教学准备课件、正方形的纸四、教学设计过程(一)迁移旧知提出猜想1、回忆旧知根据“28824=12”填空28.82.428802402.880.240.288()12被除数除数=()说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:被除数和除数同时乘
27、或除以相同的数(零除外),商不变。2、提出猜想既然分数与除法的关系这么紧密除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)(二)验证猜想,建构新知1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)2、出示学习提示。学习提示A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。B、验证结束后,把你的验证方法和结论与小组同学交流。3、汇报交流指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。C、总结规
28、律1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。师:为什么要0除外?师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)D教学例2把2/3和10/24都化为分母为12而大小不变的分数。学生独立完成,集体订正。(三)练习升华1、填空2、下面算式对吗?如果有错,错在哪里?3、把相等的分数写在同一个圈里。4、老师给出一个分数,同学们迅速说出和它相等的分数。(四)作业教材59页第9题。(五)思维拓展(六)总结延伸