《7年级数学培优提高讲义:相交线与平行线(一).doc》由会员分享,可在线阅读,更多相关《7年级数学培优提高讲义:相交线与平行线(一).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优质文本七年级数学:相交线与平行线一、知识要点:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。2.两条不同的直线,假设它们只有一个公共点,就说它们相交。即,两条直线相交有且只有一个交点。3.垂直是相交的特殊情况。有关两直线垂直,有两个重要的结论:1过一点有且只有一条直线与直线垂直;2直线外一点与直线上所有点的连线中,垂线段最短。4两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做_ ;如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做_ ;如果两个角都在两直
2、线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_.5平行公理:经过直线外一点,有且只有一条直线与这条直线_.推论:如果两条直线都与第三条直线平行,那么_.6平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:_.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_.7在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_ .8平行线的性质:两条平行直线被第三条直线所截,同位角相等.简单说成:.两条平行直线被第三条直线所截,内错角相等.简单说
3、成:_.两条平行直线被第三条直线所截,同旁内角互补.简单说成:_。.方法指导:平行线中要理解平行公理,能熟练地找出“三线八角图形中的同位角、内错角、同旁内角,并会运用与“三线八角有关的平行线的判定定理和性质定理,利用平行公理及其推论证明或求解。二、例题精讲例1如图(1),直线a与b平行,1(3x+70),2=(5x+22),求3的度数。 图(1)例2:如图(2), ABEFCD,EG平分BEF,B+BED+D =192,B-D=24,求GEF的度数。图(2)图2例3如图3,ABCD,且B=40,D=70,求DEB的度数。 图3。例4锐角三角形ABC的三边长为a,b,c,而ha,hb,hc分别为
4、对应边上的高线长,求证:ha+hb+hca+b+c图4例5如图4,直线AB与CD相交于O,EFAB于F,GHCD于H,求证EF与GH必相交。图5例6平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?例76个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?例810条直线两两相交,最多将平面分成多少块不同的区域?图6例9平面上n条直线两两相交,求证所成得的角中至少有一个角不大于图(7)例10a请你在平面上画出6条直线没有三条共点,使得它们中的每条直线都恰与另3条直线相交,并简单说明画法。b能否在平面上画出7条直线任意3条都不共点,使得它们中的每条直线都
5、恰与另3条直线相交,如果能请画出一例,如果不能请简述理由。图8三、稳固练习1平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线条A6B 7C8D92平面上三条直线相互间的交点个数是A3B1或3C1或2或3D不一定是1,2,33平面上6条直线两两相交,其中仅有3条直线过一点,那么截得不重叠线段共有A36条B33条C24条D21条4平面中有个点三个点在一条直线上,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这个点作一条直线,那么一共可以画出38条不同的直线,这时等于 A9 B10 C11 D125假设平行直线AB、CD与相交直线EF、GH相交成如图示的图形
6、,那么共得同旁内角A4对B8对C12对D16对6如图,FDBE,那么1+2-3=( )A90B135C150D180 第7题 7如图,ABCD,1=2,那么E与F的大小关系 ;8平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还有 交点9平面上3条直线最多可分平面为 个局部。10如图,ABCDEF,PSGH于P,FRG=110,那么PSQ 。11A、B是直线L外的两点,那么线段AB的垂直平分线与直线的交点个数是 。12平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。13:如图,DECB ,求证:AED=A+B14:如图,ABCD,求证:B+D+F=E+G第13
7、题 第14题15如图,CBAB,CE平分BCD,DE平分CDA,EDC+ECD =90,求证:DAAB16平面上两个圆三条直线,最多有多少不同的交点?17平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?18一直线上5点与直线外3点,每两点确定一条直线,最多确定多少条不同直线?19平面上有8条直线两两相交,试证明在所有的交角中至少有一个角小于23。20平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点,怎样安排才能办到?画出图形。答案1 5个点中任取2点,可以作4+3+2+110条直线,在一直线上的3个点中任取2点,可作2+13条,共可作10-3+18条应选C
8、2平面上3条直线可能平行或重合。应选D3对于3条共点的直线,每条直线上有4个交点,截得3条不重叠的线段,3条直线共有9条不重叠的线段对于3条不共点的直线,每条直线上有5个交点,截得4条不重叠的线段,3条直线共有12条不重叠的线段。故共有21条不重叠的线段。应选D4由个点中每次选取两个点连直线,可以画出条直线,假设三点不在一条直线上,可以画出3条直线,假设四点不在一条直线上,可以画出6条直线, 整理得 n+90 选B。5直线EF、GH分别“截平行直线AB、CD,各得2对同旁内角,共4对;直线AB、CD分别“截相交直线EF、GH,各得6对同旁内角,共12对。因此图中共有同旁内角4+616对6FDB
9、E2=AGFAGC=1-31+2-3=AGC+AGF=180 选B7解:ABCD BAD=CDA两直线平行,内错角相等 1=2BAD+1=CDA+2等式性质 即EAD=FDA AEFD EF8解:每两点可确定一条直线,这5点最多可组成10条直线,又每两条直线只有一个交点,所以共有交点个数为9+8+7+6+5+4+3+2+145个又因平面上这5个点与其余4个点均有4条连线,这四条直线共有3+2+16个交点与平面上这一点重合应去掉,共应去掉56=30个交点,所以有交点的个数应为45-3015个9可分7个局部10解 ABCDEFAPQDQG=FRG=110同理PSQ=APSPSQ=APQ-SPQ=D
10、QG-SPQ=110-90=2011 0个、1个或无数个1假设线段AB的垂直平分线就是L,那么公共点的个数应是无数个;2假设ABL,但L不是AB的垂直平分线,那么此时AB的垂直平分线与L是平行的关系,所以它们没有公共点,即公共点个数为0个;3假设AB与L不垂直,那么AB的垂直平分线与直线L一定相交,所以此时公共点的个数为1个124条直线两两相交最多有1+2+36个交点13证明:过E作EFBA2=A两直线平行,内错角相等DECB,EFBA 1=B两个角的两边分别平行,这两个角相等 1+2=B+A等式性质即AED=A+B 14证明:分别过点E、F、G作AB的平行线EH、PF、GQ,那么ABEHPF
11、GQ平行公理ABEH ABEBEH两直线平行,内错角相等同理:HEFEFPPFGFGQQGDGDCABE+EFP+PFG+GDCBEH+HEF+FGQ+QGD等式性质即B+D+EFG=BEF+GFD15证明:DE平分CDA CE平分BCDEDC=ADE ECD =BCE(角平分线定义)CDA +BCD=EDC+ADE+ECD+BCE=2EDC+ECD180DACB又CBABDAAB16两个圆最多有两个交点,每条直线与两个圆最多有4个交点,三条直线最多有3个不同的交点,即最多交点个数为:2+43+3=171712个圆相交有交点211个,第3个圆与前两个圆相交最多增加224个交点,这时共有交点2+
12、226个第4个圆与前3个圆相交最多增加236个交点,这时共有交点2+22+2312个第5个圆与前4个圆相交最多增加248个交点5个圆两两相交最多交点个数为:2+22+23+242022个圆相交将平面分成2个区域3个圆相看作第3个圆与前2个圆相交,最多有224个不同的交点,这4个点将第3个圆分成4段弧,每一段弧将它所在的区域一分为二,故增加224块区域,这时平面共有区域:2+226块4个圆相看作第4个圆与前3个圆相交,最多有236个不同的交点,这6个点将第4个圆分成6段弧,每一段弧将它所在的区域一分为二,故增加236块区域,这时平面共有区域:2+22+2312块5个圆相看作第5个圆与前4个圆相交
13、,最多有248个不同的交点,这8个点将第5个圆分成8段弧,每一段弧将它所在的区域一分为二,故增加248块区域,这时平面最多共有区域:2+22+23+2420块18 直线上每一点与直线外3点最多确定35=15条直线;直线外3点间最多能确定3 条直线, 最多能确定15+3+1=19条直线 19将这8条直线平移到共点后,构成8对互不重叠的对顶角,这8个角的和为180假设这8个角没有一个小于23,那么这8个角的和至少为: 238=184, 在所有的交角中至少有一个角小于2320平面上有10条直线,假设两两相交,最多可出现45个交点,题目要求只出现31个交点,就要减少14个交点,那么必须出现平行线,假设某一方向上有5条直线互相平行,那么可减少10个交点;假设有6条直线互相平行,那么可减少15个交点;故在这个方向上最多可取5条平行线,这时还有4个交点需要减去,转一个方向取3条平行线,即可减少3个交点,这时还剩下2条直线和一个需要减去的点,只须让这2条直线在第三个方向上互相平行即可。如图这三组平行线即为所求。