2022-2023学年福建省龙岩市中考数学专项突破仿真模拟试题(一模二模)含解析.pdf

上传人:文*** 文档编号:88926047 上传时间:2023-05-04 格式:PDF 页数:57 大小:5.63MB
返回 下载 相关 举报
2022-2023学年福建省龙岩市中考数学专项突破仿真模拟试题(一模二模)含解析.pdf_第1页
第1页 / 共57页
2022-2023学年福建省龙岩市中考数学专项突破仿真模拟试题(一模二模)含解析.pdf_第2页
第2页 / 共57页
点击查看更多>>
资源描述

《2022-2023学年福建省龙岩市中考数学专项突破仿真模拟试题(一模二模)含解析.pdf》由会员分享,可在线阅读,更多相关《2022-2023学年福建省龙岩市中考数学专项突破仿真模拟试题(一模二模)含解析.pdf(57页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022-2023学年福建省龙岩市中考数学专项突破仿真模拟试题(一模)一、选 一 选(本大题共10小题,每小题3 分,共 30分.)1.已知 l|+j7+b=0,则 a+b=A.-8 B.-62.估计几+1的值在()C.6D.8A.2 到 3 之间 B.3 到 4 之间3.下列计算正确的是()C.4 到 5 之间D.5 到 6 之间A.2。3。=6。B.(-a3)2=a6C.6a2a=3aD.(-2a)3=-6 a 34.在如图所示的四个图形为两个圆或相似的正多边形,其中位似图形的个数为()D.4 个5.一个圆锥形工艺品,它的高为3 6 c m,侧面展开图是半圆.则此圆锥的侧面积是()27A.

2、9 冗 B.18 n C.一 n D.27 无26.将二次函数y=x的图象向下平移一个单位,则平移以后的二次函数的解析式为【】A.y=x2-1 B.y=x2+l C.y=(x-1)2 D.y=(x+1)27.一个几何体的三视图如图所示,则该几何体的形状可能是()主视图 左视图俯视图B.丁.第 1页/总57页c冒冒8 .数学测试后,随机抽取九年级某班5名学生的成绩如下:9 1,7 8,9 8,8 5,9 8.关于这组数据说法错误的是()A.极差是2 0 B.中位数是9 1 C.众数是9 8 D.平均数是9 19 .如图,矩形A B C D,由四块小矩形拼成(四块小矩形放置是既没有重叠,也没有空隙

3、),其中两块矩形全等,如果要求出两块矩形的周长之和,则只要知道()A.矩形A B C D 的周长 B.矩形的周长 C.A B 的长 D.BC的长1 0 .如图,将 一 块 等 腰 的 直 角 顶 点。放在OO上,绕点C旋转三角形,使边4c圆心O,某一时刻,斜边AB在0。上截得的线段DE=2 c m,且3 c =7。机,则O C的长为()c.V 1 0 c m D.2 V 2 c m二、填 空 题(本大题共8小题,每小题2分,共16分.)1 1 .若一个多边形的每一个外角都等于3 0,则 这 个 多 边 形 的 边 数 为.1 2 .在第六次全国人口普查中,南京市常住人口约为8 0 0 万人,其

4、中6 5 岁及以上人口占9.2%,则该市6 5 岁 及 以 上 人 口 用 科 学 记 数 法 表 示 约 为.1 3 .使根式有意义的x的取值范围是.1 4 .如图,在AABC中,Z B A C =6 0 ,将aABC绕着点A顺时针旋转4 0 后得到a A D E,则/B A E=.第 2 页/总5 7 页EDBL-1 5 .因式分解:a2(x -y)-4b2(x -y)=.31 6 .如图,点A是双曲线y=-1在第二象限分支上的一个动点,连接A 0 并延长交另一分支于点xB,以A B 为底作等腰A B C,且N A C B=1 2 0 ,随着点A的运动,点 C的位置也没有断变化,但1 7.

5、如图,在直角坐标系中,点 A,B分别在x 轴,y 轴上,点 A 的坐标为(-1,0),ZA B 0=3 0,线段P Q 的端点P从点0 出发,沿a O B A 的边按0-B-A-0 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果P Q=J J,那么当点P 运动一周时,点 Q运 动 的 总 路 程 为.1 8 .在a A B C 中,ZA B C 1,2(x +3)3 3 x,2 1 .定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图,损矩形45C。中,N A B C =N ADC=9 0,则 该 损 矩 形 的 直 径 是 线

6、段.(2)探究:在上述损矩形Z 8C。内,是否存在点O,使4 B、C、。四个点都在以O为圆心的同一圆上,若存在,请指出点。的具体位置_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _;若没有存在,请说明理由.(3)实践:已知如图三条线段a、b、。,求作相邻三边长顺次为a、权c的损矩形/BCD(尺第4页/总5 7页规作图,保留作图痕迹).22.小军同学在学校组织的社会中负责了解他所居住的小区450户居民的生活用水情况,他从中随机了 50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t)频

7、数百分比2x324%3x41224%4x55x61020%6x712%7x836%8x924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量 大于或等于4 t且小于7t为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2sx3,8sx .(1)在点。运动的过程中,点 E能否移动至直线N 8上?若能,求出此时8。的长;若没有能,请说明理由;(2)如图2,在点。从点8开始移动至点C的过程中,以等边 ZD E 的边4XDE为边作。A D E F.。尸的面积是否存在最小值?若存在,求出这个最小值;若没有存在,请说明理由;若点M

8、、N、尸分别为/E、A D.O E上动点,直接写出M N+M P 的最小值.(图 1)(图2)2 7 .如图,R t Z 4 8 C 中,N 8=90。,NCA B=3 0。,它的顶点/的坐标为(1 0,0),顶点8的坐标 为(5,5 后),/3=1 0,点 尸从点N出发,沿/8 C的方向匀速运动,同时点0从点。(0,2)出发,沿y轴正方向以相同速度运动,当点尸到达点。时,两点同时停止运动,设运动的时间为f 秒.(1)当 点 尸 在 上 运 动 时,。尸 0的面积S (平方单位)与时间,(秒)之间的函数图象为抛物线的一部分,(如图),则 点 尸 的 运 动 速 度 为;(2)求(1)中面积S与

9、时间,之间的函数关系式及面积S的值及S取值时点P的坐标;(3)如果点P,。保 持(1)中的速度没有变,那么点尸沿力 3边运动时,/。尸。的大小随着时间t的增大而增大;沿着B C 边运动时,NOP0的大小随着时间f 的增大而减小,当点尸沿这两边运动时,使N O P 0=9O。的点P有 个.2 8 .如图1,抛物线产。炉+法-2 与x 轴交于点Z(-1,0),B(4,0)两点,与y轴交于点C,第 7页/总5 7页点8的直线交y轴于点E (0,2).(I)求该抛物线的解析式;(2)如图2,过 点/作 3 E的平行线交抛物线于另一点。,点 P是抛物线上位于线段力。下方的一个动点,连结以,E A,E D

10、,P D,求四边形E/P D 面积的值;(3)如图3,连结/C,将/O C 绕点。逆时针方向旋转,记旋转中的三角形为NTOC,在旋转过程中,直 线 与 直 线 8 E 交于点Q,若A B。为等腰三角形,请直接写出点。的坐标.第 8 页/总5 7页2 0 2 2-2 0 2 3学年福建省龙岩市中考数学专项突破仿真模拟试题(一模)一、选一选(本大题共10小题,每小题3 分,共 30分.)1.已知|a-l|+j7+b=0 ,则 a+b=1 A.-8 B.-6 C.6 D.8【正确答案】B【详解】非负数的性质,值,算术平方,求代数式的值.V|a-l|+-/7+b=0,|a-1|0,V7+b 0,/.a

11、-1=0,7+b=0,解得 a=l,b=-7.a+b=l+(-7)=-6.故选 B.2.估计、同+1的值在()A.2 到 3 之间 B.3 到 4 之间 C.4 到 5 之间 D.5 到 6 之间【正确答案】B【分析】利用”夹逼法“得 出 卡 的 范围,继而也可得出痛+1 的范围.【详解】解:6 9,:迎 耶,即2 指 3,-3V 6+1圆锥的侧面积=1 8兀.故选B.第1 0页/总5 7页点睛:考查圆锥的侧面积,熟记圆锥侧面积的计算公式.6.将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为【】A.y=x2-1 B.y=x2+l C.y=(x-1)2 D.y=(x+1)

12、2【正确答案】A【详解】二次函数图象与平移变换.据平移变化的规律,左右平移只改变横坐标,左减右加.上下平移只改变纵坐标,下减上加.因此,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2-1 .故选 A.7.一个几何体的三视图如图所示,则该几何体的形状可能是()K W主 视 图 左 视 图O俯视图Ab-旨c冒 D冒【正确答案】D【详解】试题分析:由主视图和左视图可得此几何体上面为台体,下面为柱体,由俯视图为圆环可得几何体为 冒.故选D.考点:由三视图判断几何体.8.数学测试后,随机抽取九年级某班5 名学生的成绩如下:91,78,98,85,9 8.关于这组数据说

13、法错误的是()A.极差是20 B.中位数是91 C.众数是98 D,平均数是91【正确答案】D第 11页/总57页【详解】试题分析:因为极差为:98-78=20,所以A 选项正确;从小到大排列为:78,85,91,98,98,中位数为9 1,所以B 选项正确;因为98出现了两次,至多,所以众数是9 8,所以C 选项正确:因为三=91+78+98+85+98 2-=90,5所以D 选项错误.故选D.考点:众数中位数平均数极差.9.如图,矩形A B C D,由四块小矩形拼成(四块小矩形放置是既没有重叠,也没有空隙),其中两块矩形全等,如果要求出两块矩形的周长之和,则只要知道()A.矩形ABCD的周

14、长 B.矩形的周长 C.AB的长 D.BC的长【正确答案】D【详解】解:设8 C 的长为x,4 8 的长为y,矩形的长为a,宽为由题意可得,两块矩形的周长之和是:x-bx2 +2 a+2 b+2 x-a=2 x-2 b+2 a +2 b+2 x-2 a =4x.故选D.10.如图,将 一 块 等 腰 8 c 的直角顶点。放在。上,绕点。旋转三角形,使边/C 圆心O,某一时刻,斜边AB在0(9 上截得的线段DE=2 c m,且8C =7an,则。的长为()A.3cm B.cm C.J fd cm D.2 y/2 cm【正确答案】A【分析】利用垂径定理得ME=DM=1,利用勾股定理和等腰三角形的性

15、质得OM与 DO的关系第 12页/总57页式,解得结果.【详解】过 0 点作OM_LAB,;.ME=DM=lcm,设 MO=h,CO=DO=x,:ABC为等腰直角三角形,AC=BC,/.ZMAO=45O,A0=-J2,hVAO=7-x,V2 h=7-x,在 RtADMO 中,h2=x2-l,2x2-2=49-14x+x2,解得:x=-17(舍去)或 x=3,故选A.本题主要考查了勾股定理,垂径定理,等腰三角形的性质,作出适当的辅助线,数形,建立等量关系是解答此题的关键.二、填 空 题(本大题共8小题,每小题2分,共16分.)11.若一个多边形的每一个外角都等于3 0 ,则 这 个 多 边 形

16、的 边 数 为.【正确答案】12【分析】多边形的外角和为360。,而多边形的每一个外角都等于30。,由此做除法得出多边形的边数.【详解】解:;360。+30。=12,这个多边形为十二边形,故 12.本题考查了多边形的外角,关键是明确多边形的外角和为360.12.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为_ _ _ _ _.第 13页/总57页【正确答案】7.36X10人.【分析】科学记数法的表示形式为ax lO 的形式,其中1 4 同 10,为整数.确的值是易错点,由于736000有 6 位,所以可以确定“=

17、6-1=5.【详解】800 万x9.2%=736000=7.36xl05 人.故答案为7.36x105人.13.使 根 式 有 意 义 的 x 的取值范围是.【正确答案】x 4 3【详解】解:根据二次根式被开方数必须是非负数的条件,要 使 在 实 数 范 围 内 有 意 义,必须3-x N O,解得:x 3.故x Q,4=1.故答案为1.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.17.如图,在直角坐标系中,点 A,B分别在x 轴,y 轴上,点A的坐标为(-1,0),Z A B 0=30 ,线段P Q 的端点P从点0出发,沿O B A 的边按O B A O 运动一周,同时另一端

18、点Q随之在x轴的非负半轴上运动,如果P Q=石,那么当点P 运动一周时,点 Q 运 动 的 总 路 程 为.【分析】首先根据题意正确画出从O-B-A运动一周的图形,分四种情况进行计算:点P第 16 页/总57 页从 0-B 时,路程是线段PQ的长;当点P 从 B-C 时,点 Q 从 O 运动到Q,计算OQ的长就是运动的路程;点P 从 CA 时,点 Q 由Q 向左运动,路程为1 点P 从 A-O 时,点 Q运动的路程就是点P 运动的路程;相加即可.【详解】在 RtAAOB 中,VZABO=30,AO=1,.AB=2,BO=722-l2=也.ZBAO=60ZOQD=90-60=30AQ=2AC,又

19、;CQ=G,;.AQ=2,OQ=2-1 =1,则点Q 运动的路程为QO=1,第 17页/总57页当点P从 C-A时,如图3 所示,点 Q运动的路程为,=2-6,当点P从 A O时,点 Q运动的路程为A O=1,二点Q运动的总路程为:-7 3+1+2 -百+1=4故答案为4.考点:解直角三角形18.在a A B C 中,Z A B C 2 0 ,三边长分别为a,b,c,将a A B C 沿直线B A 翻折,得到A B Q;然后将A B C 沿直线呢翻折,得到 A E G;再将 A B C 沿直线嫩翻折,得到A J J C?;,若翻折4次后,得到图形&B C A C|A Q 的周长为a+c+5b,

20、则翻折11次后,所得图形的周长为.(结果用含有a,b,c的式子表示)【正确答案】2 a+12 b【详解】如图2,翻折4次时,左侧边长为c,如图2,翻折5 次,左侧边长为“,所以翻折4次后,如图1,由折叠得XC=4G=4G=4G=4C2=6,所以图形48C/G4G的周长为:。+。+56,因为N/3 C 2 0。,所以(9 +1)x 2 0 =2 0 0 1,2(x +3)3 3x9【正确答案】(1)x=l (2)-1 X 3 遨,解没有等式得xN 1,解没有定时得x 3,原没有等式组的解集为-l x 3.点睛:考查解分式方程,一般步骤为:去分母,去括号,移项,合并同类项,把系数化为1.注意检验.

21、21.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图,损矩形/8 C。中,N A B C =N A D C =9 0,则该损矩形的直径是线段_ _ _ _ _.(2)探究:在上述损矩形Z 8 C。内,是否存在点O,使 4 B、C,。四个点都在以。为圆心的同一圆上,若存在,请指出点。的具体位置_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _;若没有存在,请说明理由.(3)实践:已知如图三条线段久 权 c,求 作 相 邻 三 边 长 顺 次 为 权 c的损矩形/B C D (尺规作图,保

22、留作图痕迹).第 20 页/总5 7 页aI_ _ L【正确答案】(1)AC(2)0 点为线段AC的中点(3)见解析【详解】分析:(1)由损矩形的直径的定义即可得到答案;(2)由乙40C=NZ8C=9O可判定4 B,C,。四点共圆,易得圆心是线段Z C 的中点;(3)首先画线段48=。,再以/为圆心,6 长为半径画弧,再以8 为圆心,c 长为半径画弧,过点8 作直线与以8 为圆心的弧相交于点C,连接4 C,以4 C 的中点为圆心,L/C 为半径画弧,与以点”为圆心的弧交于点。,连接Z。、DC,BC即可得到所求图形.2详解:(1)由定义知,线 段 是 该 损 矩 形 的 直 径,故答案为ZC;(

23、2);N 4)C =/4 8 C =9(y,二 ZADC+ZABC=180,.、&C.O 四点共圆,在损矩形48C D 内存在点。,使得A.B.C.D四个点都在以0为圆心的同一个圆上,:N4BC=90,./C是。的直径,二。是线段/C 的中点;(3)如图所示,四边形N8CZ)即为所求.点睛:属于新定义题目,根据题意理解损矩形的定义和性质是解题的关键.22.小军同学在学校组织的社会中负责了解他所居住的小区450户居民的生活用水情况,他从中随机了 50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如第 21页/总57页图).月均用水量(单位:t)频数百分比2x324%3

24、x41224%4x55x61020%6x712%7x836%8x924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量 大于或等于4 t且小于7t为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2sx3,8sx 9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自没有同范围的概率.【正确答案】(1)的总数是:50(户),6x 7部分的户数是:6(户),4 x 5的户数是:215(户),所占的百分比是:30%.(2)279(户);(3)3【分析】(1)根据组的频数是2,百分比是4%即可求得总人数,然后根据百分

25、比的意义求解:第22页/总57页(2)利用总户数450乘以对应的百分比求解;(3)在2 W x 3范围的两户用a、b表示,8 W x V 9这两个范围内的两户用1,2表示,利用树状图表示出所有可能的结果,然后利用概率公式求解.【详解】解:(1)的总数是:2 4%=50(户),则6 W x 7部分的户数是:50X12%=6(户),则4 W x 5的户数是:50-2-12-10-6-3-2=15(户),所占的百分比是:一x=30%.50辍 2 3 4 5 6 7 S 9161210月用水量t月均用水量(单位:t)频数百分比2x324%3x41224%4x51530%5x61020%6x7612%7

26、x836%8x924%(2)中等用水量家庭大约有450X(30%+20%+12%)=279(户);(3)在2 W x 2.答:至少需要增加2名业务员.2 5.如图所示,某办公大楼正前方有一根高度是1 5 米的旗杆E D,从办公楼顶端A 测得旗杆顶端 E 的俯角a 是 4 5,旗杆底端D到大楼前梯坎底边的距离DC是 2 0 米,梯坎坡长BC是 1 2 米,梯坎坡度i=l:石,求大楼A B的高度是多少?(结果保留根号)【正确答案】大楼A B的高度大约是(2 9+6 6)米.【详解】试题分析:延长AB 交 DC 于,作E G L AB于 G,则G H=D E=5米,EG=OH,设BH=x米,则。=、

27、石 米,在直角三角形3 C4中,5 C=1 2 米,由勾股定理得出方程,解 方 程 求 出BH=6米,C =6也,得出BG,E G的长度,证明三角形/E G 是等腰直角三角形,得出A G=E G=6+2 0(米),即可得出大楼48的高度.试题解析:延长4 B 交 DC 于,作E GL A B于 G,如图所示:则G H=D E=5米,EG=,因为梯坎坡度=1:J L 所以BH:CH=J 忑,设BH=x米,则CH=y/3米,在直角三角形B C H中,8 C=1 2 米,由 勾 股 定 理 得+(住/=1 2 2,解得k 6,所以5/7=6 米,C,=6 米,所以 BG=G H-BH=1 5-6=9

28、(米),E G=D H=CH=6 6 +2 0(米),因为a 是 4 5 ,所以N G=9 0 4 5 =4 5 ,所以三角形Z E G 是等腰直角三角形,第 2 6 页/总5 7 页所以 Z G=4 G+8 G=6 JJ+2 0+9=2 9+6 G(米).2 6.如图1,等边 Z B C 的边长为4cm,动点。从点B出发,沿射线B C方向移动,以AD为边作等边4 OE.(1)在点。运动的过程中,点 E 能 否 移 动 至 直 线 上?若能,求出此时8。的长;若没有能,请说明理由;(2)如图2,在点。从点8开始移动至点。的过程中,以等边/的边4DSE 为边作n/D E K。/D E尸的面积是否

29、存在最小值?若存在,求出这个最小值;若没有存在,请说明理由;若点、N、P分别为4 、A D,O E 上动点,直接写出A/N+M尸的最小值.(图 1)(02)【正确答案】(1)没有存在;(2)存在,6 百;3.【详解】试题分析:(1)根据等边三角形的性质可知:N B 4 C =N 4 C B =N E 4 D =6 0 .由三角形 外 角 的 性 质 可 知Z A C B =A C A D +Z A D C =6 0 0,从 而 可 知:Z C A D 60所以N C A D +Z B A C +Z E A D 面积的2 倍,所以/)r 的面积最小时,平行四边形的面积最小;(3)当点N、M、P在

30、一条直线上,且 N P_ L/O时,A/N+/尸有最小值,最 小 值 为 与 E F 之第 2 7 页/总57 页间的距离.试题解析:(1)没有存在.理由:如图1 所示:2B C和/均为等边三角形,A A B A C =N A C B =Z E A D=6 0 .,/N A C B =N C A D +N A D C=6 0 ,ZC AD 6 0 ,又,:N B A C =N E A D =6 0 ,ZC A D+B A C +/LE A D 的面积最小.ZOE 的 面 积/Z)s i n 6(r =,x2 226x2 舟 皂 =3也.2 四边形ZD E 尸为平四边形,Z E为对角线,平行四边

31、形A D E F的面积是 40 E 面积的2 倍.:PADEF的面积的最小值=2 x3石=6 7 3;第 2 8 页/总57 页如图3 所示:作点尸关于/E的对称点当点N、M、尸在一条直线上,且 N P _!_/时,A/N+M 尸有最小值,过 点/作/G N P,:A N/G P人G NP,四边形A NPsG为平行四边形.:.N P =A G =A F.s i n 6(T=2 氐#=3.即M N+M P的最小值为3.2 7.如图,R tZ/BC 中,ZS=9 0,ZC J 5=30,它的顶点/的坐标为(1 0,0),顶点8的坐标 为(5,5 7 3),45=1 0,点尸从点Z 出发,沿 的 方

32、 向 匀 速 运 动,同时点0从点。(0,2)出发,沿y轴正方向以相同速度运动,当点尸到达点。时,两点同时停止运动,设运动的时间为,秒.(1)当点尸在2 8 上运动时,OP0 的面积S(平方单位)与时间/(秒)之间的函数图象为抛物线的一部分,(如图),则 点 尸 的 运 动 速 度 为;(2)求(1)中面积S 与时间f 之间的函数关系式及面积S 的值及S 取值时点尸的坐标;(3)如果点尸,0保 持(1)中的速度没有变,那么点P 沿 N 8 边运动时,NO P 0的大小随着时间/的增大而增大;沿着B C边运动时,/。尸。的大小随着时间,的增大而减小,当点尸沿这两边运动时,使N OPQ=90 的点

33、P 有 个.(图)(图)第 2 9 页/总57 页1 9 121【正确答案】(1)2个单位/秒:(2)S=(2t+2)(10-t),当t=一时,S有值为一,此时2 2 4P(1 1,2 );(3)2.2 2【详解】试题分析:(1)由图形可知,当点尸运动了 5秒时,它到达点8,此时28=10,即可求出点尸的运动速度.(2)过户作P W L x轴,表示出。”=(10 7),OQ=2/+2,S=;(2/+2)(10 /),配方求出值即可.(3)分两种情况进行讨论即可.试题解析:(1)由图形可知,当点尸运动了 5秒时,它到达点8,此时28=1 0,因此点尸的运动速度为10-5=2个单位/秒,点P的运动

34、速度为2个单位/秒.故答案是:2个单位/秒;(2)如图,过P作P M L x轴,:点P的运动速度为2个单位/秒.1秒钟走的路程为2 3即ZP=2t,顶点8的坐标为卜,5月),/8=10,.5行百 sinZn/10=-=,10 2 ZBAO=60,AAPM=30,*AM=t,又 OA=10,.-.OAf=(1 0-/),即为OP。中OQ边上的高,而。0 =2r,OD=2,可得。0 =2r+2,.尸(10 0 Z)(O/5),S=;O0.OA/=;(2f+2)(lO T),第30页/总57页一1(u9 +丁1219 121.当/时,s有值为二二 此时尸2 4(3)当点P沿这两边运动时,NOPQ=9

35、0的点尸有2个.当点尸与点/重合时,N O P Q 。,从而/0尸090,所以当点P在4 8边上运动时,N。P 0=9O的点P有1个.同理当点P在BC边上运动时,可算得,。0 =12+1百 加17.8,而构成直角时交y轴于 20,2 17.8,所以NOC0=0,或,x=3”一2第33页/总57页AZ)(3,-2),SADP I=XPG x 昆 一 xJ =g x 2 x 4=4,S.DB=/x 5 x 2 =5,*:AD BE,SADE=S.ADB=5,S 四边形S“DB=4+5=9.(3)如图3-1 中,当00=08时,作OTLBE于T.BT=TQ=半,:.BQ=空,可得0 _U I5,5)

36、如图3-2 中,当5。=8 0 1 时,2当 O0=80 时,2,(2 4),第 3 4页/总57 页当8 0 =8Q 时,/4+丝,一 孚(5 5 J综上所述,满足条件点点。坐标为或4-8 7 5或(2,1)或4+W2022-2023学年福建省龙岩市中考数学专项突破仿真模拟试题(二模)一.选 一 选(共 1 2 小题,每小题3 分,共 3 6 分)1.2 si n45。的值等于()A.1 B.7 2 C.7 3 D.22.下列图案中,可以看做是对称图形的有()第 3 5页/总57 页C.3个D.4 个3.已知一个反比例函数的图像点A(3,-4),那么没有在这个函数图像上的点是()A.(-3,

37、-4)B.(-3,4)C.(2,6)D.(,-1 2 7 2)24.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()D.QD.6 .如图,是A A B C 的外接圆,己知NABO=50。,则/A CB 的大小为(A.3 0 B.40 C.457 .已知圆的半径为R,这个圆的内接正六边形的面积为()D.50 第 3 6 页/总57 页A.1R2 B.士叵 R 2 C.6 R 2 D.1.5R24 28 .若关于x 的一元二次方程kx2-2 x+l =0有两个没有相等的实数根,则实数k 的取值范围是()A.kl B.kl 且 k#0 。.1(/6 或 1+6 B.3 -y6

38、或 3+V6C.3+痛 或 1-&D.I -a或1+戈第n卷(非选一选)二.填 空 题(共6小题,每小题3分,共18分)13.抛物线y=5 (x-4)2+3 的 顶 点 坐 标 是.第 3 7 页/总5 7 页1 +2 m14.在反比例函数y=-的图象上有两点A (x i,y i),B (x2,y z),当Xi 0 X2 时;有 y i 0 时,尸 区 的函数图象位于三象限,y=ax2的函数图象位于二象限且原X点,a OC=R2,2 4正六边形的面积为6XR2=1R2,4 2故选B.点睛:本题考查的正多边形和圆的有关计算,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键.8.若关于x

39、 的一元二次方程k x2-2 x+l =0有两个没有相等的实数根,则实数k的取值范围是()A.k l B.k 1 且 k#0 D.k (),即(-2)2-4x xl 0,然后解没有等式即可得到k的取值范围.【详解】:关于x 的一元二次方程依2 -2 x+l=0 有两个没有相等的实数根,.,.写0 且A 0,B P(-2)2-4 x*xl 0,解得左1且上0.:.k的取值范围为*(),方程有两个没有相等的实数根;当=(),方程有两个相等的实数根;当(),方程没有实数根.也考查了一元二次方程的定义.9.在平面直角坐标系中,点 A的坐标为(-1,2),点 B的坐标为(5,4),则线段A B 的中点坐

40、标为()A.(2,3)B.(2,2.5)C.(3,3)D.(3,2.5)【正确答案】A 1 +5【详解】V-=2,22 +4 c-=3,2线段N8的中点坐标为(2,3).故选A.1().如图,OO的直径AB垂直于弦C D,垂足为E,ZA=1 5,半径为2,则弦CD的长为()A.2 B.3 C.V 2 D.4【正确答案】A【详解】【分析】先求出N B 0 C=2 N A=3 0 ,再根据垂径定理得C D=2 B C,同时利用含有3 0。角第 4 4 页/总5 7 页直角三角形的性质得B C=:OC,可求得结果.【详解】因为N A=1 5 ,所以,ZB 0 C=2 ZA =3 0 ,因为,。0的直

41、径A B 垂直于弦C D,所以,ZA B C=9 0,C D=2 B C,又 B C=y 0 C=g X 2=1,所以,C D=2 B C=2故选A本题考核知识点:垂径定理,圆心角和圆周角,直角三角形.解题关键点:推出含有3 0。角的直角三角形,并运用垂径定理.1 1 .如图,点 尸 是 正 方 形 内 一点,将绕着B沿顺时针方向旋转到与A C 8 P 重合,若尸8=3,则P P 的长为()【正确答案】BB.3夜C.3D.无法确定【详解】由旋转的性质,得BP=BP=3,/PBP=NABC=9Q。.在 R t ZX P B P 中,由勾股定理,得PP-dBP+BP=A/32+32=3V2,故选B

42、.1 2 .已知二次函数y=-(x-h)2+l(为常数),在自变量x的值满足1 W X W 3 的情况下,与其对应的函数值y的值为-5,则 h的值为()A.3-指 或 1 +后 B.3-后 或 3+灰C.3+#或 1-右 D.1-指 或 1 +指【正确答案】C【详解】当x 人时,y随x的增大而减小,第 4 5 页/总5 7 页,若占1球3,k 1时,y取得值-5,可得:-(1-A)2+1=5解得:h=l-a或h=l+&(舍);若1-3 ,当x=3时,y取得值-5,可得:-(3-)2+1=-5,解得:h=3+瓜或h=3-娓(舍).综上,人的值为1-6或3+,故选C.点睛:本题主要考查二次函数的性

43、质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.第n卷(非选一选)二.填 空 题(共6小题,每小题3分,共18分)13.抛物线y=5(x-4)2+3的顶点坐标是_ _.【正确答案】(4,3)【分析】根据顶点式的坐标特点直接写出顶点坐标.【详解】解:y=5(x-4)2+3是抛物线解析式的顶点式,二顶点坐标为(4,3).故答案为(4,3).此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.14.在反比例函数丫=上网的图象上有两点A(xi,y i),B(x2,y2),当xi0-y1 +2 m【详解】二 反比例函数尸-的图象上有两点Z(x

44、i,y),B(如/),当X1V0VX2时,有Xy0,第46页/总57页故m的取值范围是:m -y,故答案为:7 -g.本题考查了反比例函数的图象与性质,对于反比例函数丁 =&,当Q 0,反比例函数图象的两个x分支在、三象限,在每一象限内,y 随x 的增大而减小;当 =1 5 0 ,A Z D CF=3 0 ,又 C D=4,:,D F=2,C F=C D2-DF2=2,由题意得NE=3 0。,D F 广:.E F=-=2 J i,t a n E:BE=BC+CF+E F=6+4 班,;.4B=BE xtan E=(6+4。)、立=(2 73+4)米,3答:电线杆的高度为(2G+4)米.考点:解

45、直角三角形的应用.2 2.某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单 价(元/件)3034384042销 量(件)4032242016(1)通过对上面表格中的数据进行分析,发现销量y (件)与单价x (元/件)之间存在函数关系,求 y 关于x的函数关系式(没有需要写出函数自变量的取值范围);(2)预计在今后的中,销量与单价仍然存在(2)中的关系,且该产品的成本是2 0 元/件.为使工厂获得利润,该产品的单价应定为多少?第 5 1 页/总5 7页(3)为保证产品在实际试销中量没有得低于30件,且工厂获得得利润没有得低于4

46、00元,请直接写出单价x 的取值范围.【正确答案】(1)y=-2X+100;(2)当 x=35时,w的值为450元(3)30 x 3 0 件、获得的利润2400元列没有等式组,解没有等式组可得.试题解析:(1)设产kx+b,将 x=30、y=40,x=34、y=32,代入 y=kx+b,304+6=40得:344+6=32解得:k=-2%=100.y关于x 的函数关系式为:y=-2x+100;(2)设定价为x 元时,工厂获得的利润为w 元,则 所(x-20)*y=-2x2+140 x-2000=-2(x-35)2+450:.当x=35时,w 的值为450元.(3)根据题意得:-2x+100 3

47、0-2x2+140%-2000 400解得:30sxs35.2 3.在中,N4CB=90:B E 平分N A B C,。是边4 g 上一点,以8。为直径的0 0点 E,且交8 c 于点尸.(1)求证:ZC是。的切线;(2)若 B F=6,。的半径为5,求 CE的长.第 52页/总57页【正确答案】(1)详见解析;(2)4【分析】(1)首先利用等腰三角形的性质和角平分线的定义得出N E 8 C=N 0E 8,然后得出OE/BC,则有/O 4 =/4C B=90。,则结论可证.(2)连接O E、。尸,过点。作O H L B F 交B F于 ,首先证明四边形O H C E 是矩形,则有O H=C E

48、 ,然后利用等腰三角形的性质求出B H的长度,再利用勾股定理即可求出0H的长度,则答案可求.【详解】(1)证明:连接。.:.NOBE=Z O E B.:BE 平分 N4BC,:.N OBE=NE BC,:.Z E BC=Z OE B,:.OE/BC,;.NOE A =NA CB.:Z A CB=90,:.Z O E A =90 是。的切线;(2)解:连接O E、O F,过点0作O H L B F交 B尸于H,第 5 3 页/总5 7页OHVBF,OHC=90.OHC=NACB=ZOEC=90,四边形O E C H 为矩形,:.OH=CE.OB=OF,OH 1 BF,BF=6,:.BH=2.在

49、R t A8,O 中,OB=5,:.OH=y52-32=4,:.CE=4.本题主要考查切线的判定,等腰三角形的性质,矩形的性质,勾股定理,掌握切线的判定,等腰三角形的性质,矩形的性质,勾股定理是解题的关键.2 4.如图,将边长为2的正方形OABC 如图放置,。为原点.(I )若将正方形OABC 绕点0 逆时针旋转60 时,如图,求点A 的坐标;(I I)如图,若将图中的正方形O A B C 绕点0 逆时针旋转7 5 时,求点B的坐标.%【正确答案】(-G,1)(2)(-V2 -娓)【详解】试题分析:(1)过点工作x轴的垂线,垂足为。,NADO=q。,根据旋转角得出NA0D=3。,进而得到百,据

50、此可得点4的坐标;(2)连接B。,过 8作轴于。,根据旋转角为7 S。,可得NB0D=3。,根据勾股定理可得8 0=2 J5,再根据R t A f f Q D 中,BD=6,OD=屈,可得点8的坐标.解:(1)过点A作 x 轴的垂线,垂足为D,ZA D O=90,:旋转角为6 0 ,ZA O D=90 -6 0 =3 0 ,第 5 4 页/总5 7 页.AD=-i-AO=l,DO=7S-A (-V3-1);(2)连接B O,过B作BD_Ly轴于D,:旋转角为 75,NAOB=45。,A ZBOD=75-45=30,VZA=90,AB=AO=2,BO=2j,点睛:本题主要考查了旋转变换以及正方形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁