概率的意义学习.pptx

上传人:莉*** 文档编号:88373466 上传时间:2023-04-25 格式:PPTX 页数:37 大小:992.11KB
返回 下载 相关 举报
概率的意义学习.pptx_第1页
第1页 / 共37页
概率的意义学习.pptx_第2页
第2页 / 共37页
点击查看更多>>
资源描述

《概率的意义学习.pptx》由会员分享,可在线阅读,更多相关《概率的意义学习.pptx(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 概率论的产生和发展 概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论问题的源泉。传说早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 3局就算赢,全部赌本就归谁。但是当其中一个人赢了 2局,另一个人赢了1局的时候,由于某种原因,赌博终止了。问:赌本应该如何分法才合理?”第1页/共37页 帕斯卡是帕斯卡是17世纪著名的数学家,但世纪著名的数学家,但这个问题却让他苦苦思索了三年,三年后,这个问题却让他苦苦思索了三年,三年后,也就是也就是1657年,荷兰著名的数学家惠更年,荷兰著名的数

2、学家惠更斯企图自己解决这一问题,结果写成了斯企图自己解决这一问题,结果写成了论赌博中的计算论赌博中的计算一书,这就是概率论一书,这就是概率论最早的一部著作。最早的一部著作。近几十年来,随着科技的蓬勃发近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。都是以概率论作为基础的。第2页/共37页 生活中,有些事件我们事先肯定它一定会生活中,有些事件我们事先肯定它一定会发生,这些事件

3、称为发生,这些事件称为必然事件必然事件;有些事情我们能肯定它一定不会发生,这有些事情我们能肯定它一定不会发生,这些事件称为些事件称为不可能事件不可能事件;必然事件与不可能事必然事件与不可能事件都是件都是确定的事件确定的事件。有些事件我们事先无法肯定它会不会发生,有些事件我们事先无法肯定它会不会发生,这些事件称为这些事件称为不确定事件不确定事件。不确定事件发生的可能性是有大小的。不确定事件发生的可能性是有大小的。第3页/共37页指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?(2)手电筒的电池没电,灯泡发亮.(5)当x是实数时,x0;(6)一个袋内装有形状大小相同的一个白球和一

4、个黑球,从中任意摸出1个球则为白球(3)在标准大气压下,水在温度时沸腾;(4)直线过定点;(1)某地)某地1月月1日刮西北风;日刮西北风;第4页/共37页(7)(7)、打开电视机,正在播广告;、打开电视机,正在播广告;(8)(8)、我区每年都会下雨;、我区每年都会下雨;(9)(9)、明天的太阳从西方升起来;、明天的太阳从西方升起来;(10)(10)、掷两个骰子两个、掷两个骰子两个6 6朝上;朝上;(11)(11)、异号两数相乘,积为正数;、异号两数相乘,积为正数;(12)(12)、某种电器工作时,机身发热;、某种电器工作时,机身发热;第5页/共37页探究:投掷硬币时,国徽朝上的可能探究:投掷硬

5、币时,国徽朝上的可能性有多大?性有多大?在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?这是我们下面要讨论的问题。实验:让学生以同桌为一小组,每人实验:让学生以同桌为一小组,每人抛掷抛掷50次,记录正面朝上的次数次,记录正面朝上的次数。第6页/共37页抛掷次数(n)2048404012000 300002400072088正面朝上数正面朝上数(m)106120486019149841201236124频率(m/n)0.5180.5060.5010.49960.5005 0.5011历史上曾有人作过抛掷硬币的大量重复实验,历史上曾有人作过抛掷硬币的大量重复实验,结果如下

6、表所示结果如下表所示抛掷次数n频率m/n0.512048404012000240003000072088实验结论:当抛硬币的次数很多时当抛硬币的次数很多时,出现下面的频率值是出现下面的频率值是稳定的稳定的,接近于常数接近于常数0.5,在它附近摆动在它附近摆动.第7页/共37页 随机事件在一次试验中是否随机事件在一次试验中是否发生虽然不能事先确定,但是在发生虽然不能事先确定,但是在大量重复大量重复试验的情况下,它的发试验的情况下,它的发生呈现出一定的生呈现出一定的规律性规律性出现的出现的频率值接近于常数频率值接近于常数.第8页/共37页随机事件及其概率某批乒乓球产品质量检查结果表:某批乒乓球产品

7、质量检查结果表:当抽查的球数很多时,抽到优等品的频率当抽查的球数很多时,抽到优等品的频率 接近于常数接近于常数0.95,在它附近摆动。,在它附近摆动。0.9510.9540.940.970.920.9优等品频率200010005002001005019029544701949245优等品数抽取球数很多很多常数常数第9页/共37页某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽当试验的油菜籽的粒数很多时,油菜籽发芽的频率的频率 接近于常数接近于常数0.9,在它附近摆动。,在它附近摆动。很多很多常数常数第10页/共37页随机事件及其概率事件事件 的概率的定义的概率的定

8、义:一般地,在一般地,在大量重复大量重复进行同一试进行同一试验时,事件验时,事件 发生的频率发生的频率 (n(n为实验为实验的次数的次数,m,m是事件发生的频数是事件发生的频数)总是接总是接近于某个近于某个常数常数,在它附近摆动,这时,在它附近摆动,这时就把这个常数叫做事件就把这个常数叫做事件 的的概率概率,记,记做做 第11页/共37页由定义可知:(1)求一个事件的概率的基本方法是通过大量的重复试验;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为)必然事件的概率为1,不可能事件的,不可能事件的概率为概率为0因此因此 (2)只

9、有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;第12页/共37页例:对一批衬衫进行抽查,结果如下表:例:对一批衬衫进行抽查,结果如下表:抽取抽取件数件数n 50 100 200 500 800 1000优等优等品件品件数数m 42 88 176 445 724 901优等优等品频品频率率m/n0.840.880.880.890.9010.905求抽取一件衬衫是优等品的概率约是多少?求抽取一件衬衫是优等品的概率约是多少?抽取衬衫抽取衬衫2000件,约有优质品几件?件,约有优质品几件?第13页/共37页某射手进行射击,结果如下表所示:某射手进行射击,结果如下表所示:射击次射击次数数n

10、击中靶击中靶心次数心次数m 击中靶击中靶心频率心频率m/n例例填表填表(2)这个射手射击一次,击中靶心这个射手射击一次,击中靶心的概率是多少?的概率是多少?.(3)这射手射击这射手射击1600次,击中靶心的次数是次,击中靶心的次数是。8000.650.580.520.510.55第14页/共37页2.必然事件的概率为必然事件的概率为_,不可能事件,不可能事件的概率为的概率为_,不确定事件的概率范围,不确定事件的概率范围是是_1.任意抛掷一枚均匀的任意抛掷一枚均匀的骰子骰子,骰子停止转动骰子停止转动后后,朝上的点数朝上的点数 可能可能,有哪些可能有哪些可能 .第15页/共37页4.表中是一个机器

11、人做表中是一个机器人做9999次次“抛硬币抛硬币”游戏时记录下的出现正面的频数和频率游戏时记录下的出现正面的频数和频率抛掷结果5次50次300次800次3200次6000次9999次出现正面的频数131135408158029805006出现正面的频率20%62%45%51%494%497%501%第16页/共37页(1)由这张频数和频率表可知,机器人抛掷完由这张频数和频率表可知,机器人抛掷完5次次时,得到时,得到1次正面,正面出现的频率是次正面,正面出现的频率是20%,那,那么,也就是说机器人抛掷完么,也就是说机器人抛掷完5次时,得到次时,得到_次反面,反面出现的频率是次反面,反面出现的频率

12、是_480%(2)由由这这张张频频数数和和频频率率表表可可知知,机机器器人人抛抛掷掷完完9999次次时时,得得到到_次次正正面面,正正面面出出现现的的频频率率是是_那那么么,也也就就是是说说机机器器人人抛抛掷掷完完9999次次时时,得得到到_次次反反面面,反反面出现的频率是面出现的频率是_500650.1%499449.9%第17页/共37页5.给出以下结论,错误的有()给出以下结论,错误的有()如如果果一一件件事事发发生生的的机机会会只只有有十十万万分分之之一一,那那么么它它就就不不可可能能发发生生如如果果一一件件事事发发生生的的机机会会达达到到995%,那那么么它它就就必必然然发发生生如如

13、果果一一件件事事不不是是不不可可能能发发生生的的,那那么么它它就就必必然然发发生生如如果果一一件件事事不不是是必必然然发发生生的的,那么它就不可能发生那么它就不可能发生A1个个B2个个C3个个D4个个D第18页/共37页6一一位位保保险险推推销销员员对对人人们们说说:“人人有有可可能能得得病病,也也有有可可能能不不得得病病,因因此此,得得病病与与不得病的概率各占不得病的概率各占50%”他的说法()他的说法()A正确正确B不正确不正确C有时正确,有时不正确有时正确,有时不正确D应由气候等条件确定应由气候等条件确定B第19页/共37页7某某位位同同学学一一次次掷掷出出三三个个骰骰子子三三个个全全是

14、是“6”的事件是(的事件是()A不可能事件不可能事件B必然事件必然事件C不确定事件可能性较大不确定事件可能性较大D不确定事件可能性较小不确定事件可能性较小第20页/共37页8.8.对某电视机厂生产的电视机进行抽样检测的数据如下:抽取台数501002003005001000优等品数4092192285478954(1)计算表中优等品的各个频率;)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少)该厂生产的电视机优等品的概率是多少?第21页/共37页解:解:各次优等品频率依次为各次优等品频率依次为优等品的概率为:优等品的概率为:0.950.8,0.92,0.96,0.95,0.9

15、56,0.954第22页/共37页9.现有3张牌,利用这3张牌:(1).从中抽一张牌,在未抽从中抽一张牌,在未抽牌之前分别说出一件有牌之前分别说出一件有关抽牌的必然事件关抽牌的必然事件,不可不可能事件能事件,不确定事件不确定事件.(2).任意抽一张牌任意抽一张牌,抽到的抽到的牌数字有几种可能牌数字有几种可能?第23页/共37页10.笼子里关着一笼子里关着一只兔子(如图),只兔子(如图),兔子的主人决定把兔子的主人决定把兔子放归大自然,兔子放归大自然,将笼子所有的门都将笼子所有的门都打开。兔子要先经打开。兔子要先经过第一道(过第一道(A,B,C),再经过第),再经过第二道门(二道门(D或或E)才

16、能出去。问兔子才能出去。问兔子走出笼子的路线走出笼子的路线(经过的两道门)(经过的两道门)有多少种不同的可有多少种不同的可能?能?ACBDE第24页/共37页(1)(1)(1)(1)甲自由转动转盘甲自由转动转盘甲自由转动转盘甲自由转动转盘A A A A,同时乙自由转动转盘,同时乙自由转动转盘,同时乙自由转动转盘,同时乙自由转动转盘B B B B;(2)(2)(2)(2)转盘停止后,指针指向几就顺时针走几格,得到一个转盘停止后,指针指向几就顺时针走几格,得到一个转盘停止后,指针指向几就顺时针走几格,得到一个转盘停止后,指针指向几就顺时针走几格,得到一个 数字数字数字数字 (如如如如,在转盘在转盘

17、在转盘在转盘A A A A中中中中,如果指针指向如果指针指向如果指针指向如果指针指向3,3,3,3,就按顺时针方向就按顺时针方向就按顺时针方向就按顺时针方向走走走走3 3 3 3格格格格,得到数字得到数字得到数字得到数字6)6)6)6);(3)(3)(3)(3)如果最终得到的数字是偶数就得如果最终得到的数字是偶数就得如果最终得到的数字是偶数就得如果最终得到的数字是偶数就得1 1 1 1分,否则不得分;分,否则不得分;分,否则不得分;分,否则不得分;(4)(4)(4)(4)转动转动转动转动1010次转盘,记录每次得分的结果,累计得分高的次转盘,记录每次得分的结果,累计得分高的次转盘,记录每次得分

18、的结果,累计得分高的次转盘,记录每次得分的结果,累计得分高的 人为胜者。人为胜者。人为胜者。人为胜者。本图是两个可以自本图是两个可以自本图是两个可以自本图是两个可以自由转动的转盘,每个转由转动的转盘,每个转由转动的转盘,每个转由转动的转盘,每个转盘被分成盘被分成盘被分成盘被分成6 6 6 6个相等的扇个相等的扇个相等的扇个相等的扇形。利用这两个转盘做形。利用这两个转盘做形。利用这两个转盘做形。利用这两个转盘做下面的游戏:下面的游戏:下面的游戏:下面的游戏:这个游戏对甲、乙双方公平吗?这个游戏对甲、乙双方公平吗?这个游戏对甲、乙双方公平吗?这个游戏对甲、乙双方公平吗?说说你的理由。说说你的理由。

19、说说你的理由。说说你的理由。1 12 23 34 45 56 61 13 35 52 24 46 6A AB B第25页/共37页甲得分的情况转盘转盘转盘转盘A A1 12 23 34 45 56 6(1 1 1 1)如果指针指向奇数如果指针指向奇数如果指针指向奇数如果指针指向奇数,如如如如“3 3 3 3”,则按顺时针方向走则按顺时针方向走则按顺时针方向走则按顺时针方向走3 3 3 3格格格格,得到数字得到数字得到数字得到数字6 6 6 6,1 12 23 34 45 56 61 12 23 34 45 56 61 12 23 34 45 56 61 12 23 34 45 56 6所得数字

20、是偶数,得所得数字是偶数,得所得数字是偶数,得所得数字是偶数,得1 1 1 1分分分分;同理同理同理同理,当第一次指针指向其它的当第一次指针指向其它的当第一次指针指向其它的当第一次指针指向其它的奇数奇数奇数奇数 a a 时,时,时,时,指针顺时针方向转动同样的格数指针顺时针方向转动同样的格数指针顺时针方向转动同样的格数指针顺时针方向转动同样的格数 a a,所得结果数应是所得结果数应是所得结果数应是所得结果数应是 2 2a a 或或或或(2(2a a 6)(6)(a a3),3),即即即即所得结果数总是偶数所得结果数总是偶数所得结果数总是偶数所得结果数总是偶数.(2 2 2 2)如果指针指向偶数

21、如果指针指向偶数如果指针指向偶数如果指针指向偶数b b,1 12 23 34 45 56 61 12 23 34 45 56 6如如如如6 6,指针顺时针方向转动同样的格数指针顺时针方向转动同样的格数指针顺时针方向转动同样的格数指针顺时针方向转动同样的格数 b b,故所得结果数应是故所得结果数应是故所得结果数应是故所得结果数应是 2 2b b 或或或或(2(2b b 6)(6)(b b4),4),所得结果数也是偶数所得结果数也是偶数所得结果数也是偶数所得结果数也是偶数.总之总之总之总之,甲每次所得结果数总是偶数甲每次所得结果数总是偶数甲每次所得结果数总是偶数甲每次所得结果数总是偶数.第26页/

22、共37页乙得分的情况转盘转盘转盘转盘B B(1 1 1 1)如果指针指向奇数如果指针指向奇数如果指针指向奇数如果指针指向奇数,如如如如“3 3 3 3”,则按顺时针方向走则按顺时针方向走则按顺时针方向走则按顺时针方向走3 3 3 3格格格格,得到数字得到数字得到数字得到数字4 4 4 4,所得到的数字是偶数,得所得到的数字是偶数,得所得到的数字是偶数,得所得到的数字是偶数,得1 1 1 1分分分分;如如如如4 4,1 13 35 52 24 46 61 13 35 52 24 46 61 13 35 52 24 46 61 13 35 52 24 46 61 13 35 52 24 46 6(

23、2 2 2 2)如果指针指向偶数如果指针指向偶数如果指针指向偶数如果指针指向偶数b b,1 13 35 52 24 46 61 13 35 52 24 46 6指针顺时针方向转动指针顺时针方向转动指针顺时针方向转动指针顺时针方向转动4 4 4 4格格格格,1 13 35 52 24 46 61 13 35 52 24 46 61 13 35 52 24 46 61 13 35 52 24 46 6得到数字得到数字得到数字得到数字5 5 5 5,所得到数字是奇数,不得分所得到数字是奇数,不得分所得到数字是奇数,不得分所得到数字是奇数,不得分;因此因此因此因此,乙每次所得到的数字可能是奇乙每次所得

24、到的数字可能是奇乙每次所得到的数字可能是奇乙每次所得到的数字可能是奇数,也可能是偶数数,也可能是偶数数,也可能是偶数数,也可能是偶数;每次得分与不得分每次得分与不得分每次得分与不得分每次得分与不得分不能确定不能确定不能确定不能确定.而甲每次指针转动后所得到的数字而甲每次指针转动后所得到的数字而甲每次指针转动后所得到的数字而甲每次指针转动后所得到的数字总是偶数,总是偶数,总是偶数,总是偶数,因此因此因此因此,本转盘游戏对乙不公平本转盘游戏对乙不公平本转盘游戏对乙不公平本转盘游戏对乙不公平.第27页/共37页 (1 1 1 1)对于转盘对于转盘对于转盘对于转盘A A,“最终得到的数字是偶数最终得到

25、的数字是偶数最终得到的数字是偶数最终得到的数字是偶数”这个事这个事这个事这个事件件件件1 12 23 34 45 56 6转盘转盘A是必然的、不可能的还是不确定的?是必然的、不可能的还是不确定的?是必然的、不可能的还是不确定的?是必然的、不可能的还是不确定的?是必然的是必然的是必然的是必然的“最终得到的数字是奇数最终得到的数字是奇数最终得到的数字是奇数最终得到的数字是奇数”呢?呢?呢?呢?是不可能的是不可能的是不可能的是不可能的;1 13 35 52 24 46 6转盘转盘转盘转盘B B(2 2 2 2)对于转盘对于转盘对于转盘对于转盘B B,“最终得到的数字是偶数最终得到的数字是偶数最终得到

26、的数字是偶数最终得到的数字是偶数”这个事件这个事件这个事件这个事件是必然的、不可能的还是不确定的?是必然的、不可能的还是不确定的?是必然的、不可能的还是不确定的?是必然的、不可能的还是不确定的?是不确定的是不确定的是不确定的是不确定的;“最终得到的数字是奇数最终得到的数字是奇数最终得到的数字是奇数最终得到的数字是奇数”呢?呢?呢?呢?是不确定的是不确定的是不确定的是不确定的;(3 3 3 3)你能用自己的语言描述必然事件发生的可能性吗)你能用自己的语言描述必然事件发生的可能性吗)你能用自己的语言描述必然事件发生的可能性吗)你能用自己的语言描述必然事件发生的可能性吗?第28页/共37页人们通常人

27、们通常用用1(或或100%)来表示来表示必然事件发生的可能性,必然事件发生的可能性,即即概率为概率为1;用用0来表示不可能事件发生的可能性。来表示不可能事件发生的可能性。即即概率为概率为0;必然事件必然事件发生的可能性是发生的可能性是100%即即概率为概率为1;不可能事件不可能事件发生的可能性是发生的可能性是0;不确定事件不确定事件发生的可能性是发生的可能性是大于大于0而小于而小于1的的.即即概率为概率为0;即此时即此时概率为概率为第29页/共37页可以看到事件发生的可能性可以看到事件发生的可能性越大越大概率就越接近概率就越接近1;反之反之,事事件发生的可能性越小件发生的可能性越小概率就概率就

28、越接近越接近0第30页/共37页甲、乙甲、乙两人做如下的游戏:两人做如下的游戏:你认为这个游戏你认为这个游戏 对甲、乙双方公平吗?对甲、乙双方公平吗?做一做做一做如图是一个均匀的骰子,它的每个面上分别标如图是一个均匀的骰子,它的每个面上分别标有数字有数字1,2,3,4,5,6。任意掷出骰子后,若朝上的数字是任意掷出骰子后,若朝上的数字是6,则甲获胜;,则甲获胜;若朝上的数字不是若朝上的数字不是6,则乙获胜。,则乙获胜。第31页/共37页用下图表示事件发生的可能性:用下图表示事件发生的可能性:不可能不可能不可能不可能发生发生发生发生你能在上图中大致表示你能在上图中大致表示你能在上图中大致表示你能

29、在上图中大致表示“朝上的数字是朝上的数字是朝上的数字是朝上的数字是6”6”和和和和“朝上的数字不是朝上的数字不是朝上的数字不是朝上的数字不是6”6”的可能性吗的可能性吗的可能性吗的可能性吗?0 01 1(100100%)%)(5050%)%)必然必然必然必然发生发生发生发生“朝上的数字不是朝上的数字不是6”“朝上的数字是朝上的数字是6”可能发生可能发生可能发生可能发生“朝上的数字是朝上的数字是朝上的数字是朝上的数字是6”6”的可能性在什么范围内?的可能性在什么范围内?的可能性在什么范围内?的可能性在什么范围内?0 0“朝上的数字不是朝上的数字不是朝上的数字不是朝上的数字不是6”6”的可能性在什

30、么范围内?的可能性在什么范围内?的可能性在什么范围内?的可能性在什么范围内?0 0第32页/共37页练习抛掷一只纸杯的重复试验的结果如下表:练习抛掷一只纸杯的重复试验的结果如下表:抛掷次数100150200250300杯口朝上频数20365060频率0.20.240.250.25(1)在表内的空格初填上适当的数在表内的空格初填上适当的数()任意抛掷一只纸杯,杯口朝上的概率为()任意抛掷一只纸杯,杯口朝上的概率为第33页/共37页2.明天下雨的概率为明天下雨的概率为95,那么下列说法错误的是,那么下列说法错误的是()(A)明天下雨的可能性较大明天下雨的可能性较大(B)明天不下雨的可能性较小明天不

31、下雨的可能性较小(C)明天有可能性是晴天明天有可能性是晴天(D)明天不可能性是晴天明天不可能性是晴天3.有一种麦种,播种一粒种子,发芽的概率有一种麦种,播种一粒种子,发芽的概率是是98,成秧的概率为,成秧的概率为85.若要得到若要得到10 000株麦苗株麦苗,则需则需要要 粒麦种粒麦种.(精确到精确到1粒粒)第34页/共37页4.对某服装厂的成品西装进行抽查对某服装厂的成品西装进行抽查,结果如下表结果如下表:抽检件数抽检件数100200300400正品正品频数频数97198294392频率频率(1)请完成上表请完成上表(2)任抽一件是次品的概率是多少任抽一件是次品的概率是多少?(3)如果销售如果销售1 500件西服件西服,那么需要准备多少件正品那么需要准备多少件正品西装供买到次品西装的顾客调换西装供买到次品西装的顾客调换?第35页/共37页小结1随机事件的概念2随机事件的概率的定义在一定条件下可能发生也可能不发生的事件,叫做随机事件在大量重复进行同一试验时,事件发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件的概率第36页/共37页感谢您的欣赏第37页/共37页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁