《2.2.1椭圆及其标准方程-.ppt》由会员分享,可在线阅读,更多相关《2.2.1椭圆及其标准方程-.ppt(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.2.1椭圆及其标准方程-2.1.1椭圆及其标准方程天体的运行天体的运行如何精确地设计、制作、建造出现实生活中这些椭圆形的如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?物件呢?生生活活中中的的椭椭圆圆一一.课题引入:课题引入:课题引入:课题引入:椭圆的画法椭圆的画法椭圆及其标准方程椭圆及其标准方程椭圆及其标准方程椭圆及其标准方程F1F2动画演示(三)注重本质(三)注重本质 、理解概念、理解概念一、椭圆的定义:一、椭圆的定义:平面内与两个定点平面内与两个定点F1、F2的距离的和等于常数的距离的和等于常数(大于(大于|F1F2|)的点的轨迹叫做的点的轨迹叫做椭圆椭圆,这两个定点叫做这
2、两个定点叫做椭圆的焦点椭圆的焦点,两焦点的距离叫做两焦点的距离叫做椭圆的焦距椭圆的焦距.问题问题1:当常数等于当常数等于|F1F2|时时,点,点M的轨迹的轨迹 是什么?是什么?问题问题2:当常数小于当常数小于|F1F2|时时,点,点M的轨迹的轨迹 是什么?是什么?线段线段F1F2轨迹不存在轨迹不存在绳长绳长等于等于两定点两定点间间距离即距离即2a=2c 时时,绳长绳长小于小于两定点两定点间间距离即距离即2a2c(?);(?);4、如果如果2a=2c,则,则M点的点的轨迹是线段轨迹是线段F1F2.5、如果如果2a 2c)的动的动点点M的轨迹方程。的轨迹方程。解:以解:以F1F2所在直线为所在直线
3、为X轴,轴,F1F2 的中的中点为原点建立平面直角坐标系,则焦点点为原点建立平面直角坐标系,则焦点F1、F2的坐标分别为的坐标分别为(-c,0)、(c,0)。(-c,0)(c,0)(x,y)设设M(x,y)为所求轨迹上的任意一点,为所求轨迹上的任意一点,则则:|MF1|+|MF2|=2aOXYF1F2M(-c,0)(c,0)(x,y)两边平方得:两边平方得:a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2即:即:(a2-c2)x2+a2y2=a2(a2-c2)因为因为2a2c,即,即ac,所以,所以a2-c20,令,令a2-c2=b2,其中,其中b0,代入上式可得:,代入上
4、式可得:b2x2+a2y2=a2b2两边同时除以两边同时除以a2b2得:得:(ab0)这个方程叫做这个方程叫做椭圆的标准方程,椭圆的标准方程,它所表示的椭圆的它所表示的椭圆的焦点在焦点在x 轴上。轴上。aA1yOF1F2xB2B1A2cb三、三、椭圆方程的几何意义:椭圆方程的几何意义:如果椭圆的如果椭圆的焦点在焦点在y轴上轴上,焦点是焦点是F1(o,-c)、F2(0,c)方程是怎样呢?方程是怎样呢?椭圆的第二种形式椭圆的第二种形式:1oFyx2FM 图图 形形方方 程程焦焦 点点F(c,0)0)在轴上在轴上F(0(0,c)在轴上在轴上a,b,c之间的关系之间的关系c2 2=a2 2-b2 2P
5、=M|MF1|+|MF2|=2a(2a2c0)定定 义义12yoFFMx1oFyx2FM四、两类标准方程的对照表:注注:哪个分母大,焦点就在相应的哪条坐标轴上!哪个分母大,焦点就在相应的哪条坐标轴上!OXYF1F2M(-c,0)(c,0)YXOF1F2M(0,-c)(0,c)椭圆的标准方程的再认识:(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是)椭圆标准方程的形式:左边是两个分式的平方和,右边是1(3)椭圆的标准方程中三个参数)椭圆的标准方程中三个参数a、b、c满足满足a2=b2+c2。(4)由椭圆的标准方程可以求出三个参数)由椭圆的标准方程可以求出三个参数a、b、c的值。的值。(2
6、)椭圆的标准方程中,)椭圆的标准方程中,x2与与y2的分母哪一个大,则焦点在哪的分母哪一个大,则焦点在哪 一个轴上。一个轴上。例例 写出适合下列条件的椭圆的标准方程写出适合下列条件的椭圆的标准方程 (1)a=4,b=1,焦点在,焦点在 x 轴轴上上;(2)a=4,b=1,焦点在坐标轴上;,焦点在坐标轴上;或五五五五、数学应用:数学应用:数学应用:数学应用:例例2、求满足下列条件的椭圆的标准方程:、求满足下列条件的椭圆的标准方程:(1)两焦点的坐标分别是(两焦点的坐标分别是(-4,0)、()、(4,0),),椭圆上一点椭圆上一点P到两焦点距离之和等于到两焦点距离之和等于10。(2)两焦点的坐标分
7、别是(两焦点的坐标分别是(-2,0)、()、(2,0),),且椭圆经过点且椭圆经过点P 。(1)两焦点的坐标分别是(两焦点的坐标分别是(-4,0)、()、(4,0),椭),椭圆上一点圆上一点P到两焦点距离之和等于到两焦点距离之和等于10。解:因为椭圆的焦点在解:因为椭圆的焦点在X轴上,所以可设它的方程轴上,所以可设它的方程 为:为:2a=10,2c=8即 a=5,c=4故 b2=a2-c2=52-42=9所以椭圆的标准方程为:所以椭圆的标准方程为:(2)两焦点的坐标分别是(两焦点的坐标分别是(-2,0)、()、(2,0),且),且 椭圆经过点椭圆经过点P 。解:因为椭圆的焦点在解:因为椭圆的焦
8、点在X轴上,所以可设它的方程为:轴上,所以可设它的方程为:由椭圆的定义可知:又因又因 c=2,所以椭圆的标准方程为:所以椭圆的标准方程为:故故 b2=a2-c2=10-22=6课堂练习2:1.口答:下列方程哪些表示椭圆?口答:下列方程哪些表示椭圆?若是若是,则判定其焦点在何轴?则判定其焦点在何轴?并指明并指明 ,写出焦点坐标,写出焦点坐标.?1、方程、方程 ,分别求方程满足下列条件,分别求方程满足下列条件的的m的取值范围:的取值范围:表示一个圆;表示一个圆;探究与互动:探究与互动:析:方程表示圆需要满足的条件:析:方程表示圆需要满足的条件:1、方程、方程 ,分别求方程满足下列条件,分别求方程满
9、足下列条件的的m的取值范围:的取值范围:表示一个圆;表示一个圆;表示一个椭圆表示一个椭圆;探究与互动:探究与互动:析:方程表示一个椭圆需要满足的条件:析:方程表示一个椭圆需要满足的条件:1、方程、方程 ,分别求方程满足下列条件,分别求方程满足下列条件的的m的取值范围:的取值范围:表示一个圆;表示一个圆;表示一个椭圆表示一个椭圆;探究与互动:探究与互动:析:方程表示一个椭圆需要满足的条件:析:方程表示一个椭圆需要满足的条件:1、方程、方程 ,分别求方程满足下列条件,分别求方程满足下列条件的的m的取值范围:的取值范围:表示一个圆;表示一个圆;表示一个椭圆;表示一个椭圆;表示焦点在表示焦点在x轴上的
10、椭圆。轴上的椭圆。探究与互动:探究与互动:析:表示焦点在析:表示焦点在x轴上的椭圆需要满足的条件:轴上的椭圆需要满足的条件:解题感悟:解题感悟:方程表示椭圆时要看清楚限方程表示椭圆时要看清楚限制条件,焦点在哪个轴上。制条件,焦点在哪个轴上。练习练习3:若方程:若方程4x2+ky2=1表示的曲线是焦点在表示的曲线是焦点在y轴轴上的椭圆,求上的椭圆,求k的取值范围。的取值范围。方程表示的曲线是焦点在y轴上的椭圆解之得:0k4k的取值范围为0k|BC|,点点A的轨迹是以的轨迹是以B C为焦点的椭圆为焦点的椭圆(除去与除去与x轴的交点轴的交点).且且2a=12,2c=8,及及a2=b2+c2得得a2=
11、36,b2=20.故点故点A的轨迹方程是的轨迹方程是 (y0).例例4:已知已知ABC的一边的一边BC长为长为8,周长为周长为20,求顶点求顶点A的的轨迹方程轨迹方程.解解:以以BC边所在直线为边所在直线为x轴轴,BC中点为原点中点为原点,建立如右图所示的建立如右图所示的直角坐标系直角坐标系,则则B C两点的坐标分别为两点的坐标分别为(-4,0)(4,0).定义法定义法练习:已知A(1,0),B(1,0),线段CA、AB、CB的长成等差数列,则点C的轨迹方程是_.x2/4+y2/3=1椭圆及其标准方程椭圆及其标准方程(2)分母哪个大,焦点就在哪个轴上分母哪个大,焦点就在哪个轴上平面内到两个定点
12、平面内到两个定点F1,F2的距离的和等的距离的和等于常数(大于于常数(大于F1F2)的点的轨迹)的点的轨迹标准方程标准方程不不 同同 点点相相 同同 点点图图 形形焦点坐标焦点坐标定定 义义a、b、c 的关系的关系焦点位置的判断焦点位置的判断xyF1 1F2 2POxyF1 1F2 2PO复习旧知例1求焦点在坐标轴上,且经过两点的椭圆的标准方程。x2/15+y2/5=1分析一:当焦点在x轴上时,设方程x2/a2+y2/b2=1 当焦点在x轴上时,设方程x2/b2+y2/a2=1分析二:设方程mx2+ny2=1(m0,n0)(2)求与椭圆x2/5y2/41有公共焦点,且过点(3,0)的椭圆的标准
13、方程。x2/9y2/81(3)已知椭圆x22y2a2(a0)的左焦点到直线l:xy20的距离为 ,求椭圆方程。x2/8y2/41 例例2、在圆上任取一点、在圆上任取一点P,过点,过点P作作x轴轴的垂线段的垂线段PD,D为垂足。当点为垂足。当点P在圆上运动时,线在圆上运动时,线段段PD的中点的中点M的轨迹是什么?为什么?的轨迹是什么?为什么?oxyPD相关点法相关点法(转移法转移法):即利用中间变量求曲线方程即利用中间变量求曲线方程.yxoPPMPABMxyo练习:课本P42,练习第4题七.走进高考:(高考(理)第题第一问)已知椭圆的中心为直角坐标系已知椭圆的中心为直角坐标系xOy的原点,焦的原点,焦点在轴上,它的一个顶点到两个焦点的距离分别是点在轴上,它的一个顶点到两个焦点的距离分别是7和和1.求椭圆的方程(高考(文)第题)过椭圆过椭圆 的右焦点作一条斜率的右焦点作一条斜率为的直线与椭圆交于为的直线与椭圆交于A、B两点,两点,O为坐标原点,则为坐标原点,则OAB的面积为的面积为_.此此课件下件下载可自行可自行编辑修改,修改,仅供参考!供参考!感感谢您的支持,我您的支持,我们努力做得更好!努力做得更好!谢谢!