《辽源市重点中学2023届中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽源市重点中学2023届中考冲刺卷数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在中,则的值是( )ABCD2如图,在平
2、面直角坐标系xOy中,由绕点P旋转得到,则点P的坐标为( )A(0, 1)B(1, -1)C(0, -1)D(1, 0)3在ABC中,点D、E分别在AB、AC上,如果AD2,BD3,那么由下列条件能够判定DEBC的是( )ABCD4下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3a=a3D(a5)2=a75把不等式组的解集表示在数轴上,正确的是()ABCD6下列选项中,可以用来证明命题“若a2b2,则ab“是假命题的反例是()Aa2,b1Ba3,b2Ca0,b1Da2,b17如图所示,有一条线段是()的中线,该线段是( ). A线段GHB线段ADC线段AED线段AF8在下列网格中,小
3、正方形的边长为1,点A、B、O都在格点上,则的正弦值是ABCD9如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上已知纸板的两条边DF50cm,EF30cm,测得边DF离地面的高度AC1.5m,CD20m,则树高AB为()A12mB13.5mC15mD16.5m10图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是()A0B1CD二、填空题(共7小题,每小题3分,满分21分)11若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)_12分
4、解因式:(2a+b)2(a+2b)2= 13若实数a、b在数轴上的位置如图所示,则代数式|ba|+化简为_14如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将OAB缩小得到OAB,若OAB与OAB的相似比为2:1,则点B(3,2)的对应点B的坐标为_15如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若ACB=90,则点C的坐标为_16如图,经过点B(2,0)的直线与直线相交于点A(1,2),则不等式的解集为 17如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD100,AE200,AB4
5、0,AC20,BC30,则通过计算可得DE长为_三、解答题(共7小题,满分69分)18(10分)已知平行四边形ABCD中,CE平分BCD且交AD于点E,AFCE,且交BC于点F 求证:ABFCDE; 如图,若1=65,求B的大小19(5分)已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处如图,已知折痕与边BC交于点O,连接AP、OP、OA(1)求证:;(2)若OCP与PDA的面积比为1:4,求边AB的长20(8分)如图,在矩形ABCD中,AB3,AD4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90得线段PQ(1)当点Q落到AD上时,PAB_,PA
6、_,长为_;(2)当APBD时,记此时点P为P0,点Q为Q0,移动点P的位置,求QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果21(10分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?22(1
7、0分)如图,在ABC中,以AB为直径的O交BC于点D,交CA的延长线于点E,过点D作DHAC于点H,且DH是O的切线,连接DE交AB于点F(1)求证:DC=DE;(2)若AE=1,求O的半径23(12分)计算: .24(14分)如图,在 RtABC 中,C=90,AC=3,BC=4,ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.(1)求线段 CD 的长;(2)求ADE 的面积.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90,BC=1,AB=4,
8、故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比2、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化旋转.3、D【解析】根据平行线分线段成比例定理的逆定理,当或时,然后可对各选项进行判断.【详解】解:当或时,即或.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例
9、.也考查了平行线分线段成比例定理的逆定理.4、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.5、A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可【详解】 由,得x2,由,得x1,所以不等式组的解集是:2x1不等式组的解集在数轴上表示为:
10、故选A【点睛】本题考查的是解一元一次不等式组熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键6、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题由此即可解答.【详解】当a2,b1时,(2)212,但是21,a2,b1是假命题的反例故选A【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法7、B【解析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据三角形中线的定义知:线段AD是ABC的中线故选B【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的
11、中点与此边所对顶点的连线叫做三角形的中线8、A【解析】由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可【详解】解:由题意得,由勾股定理得,故选:A【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边9、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB【详解】DEF=BCD=90,D=D,DEFDCB,DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,由勾股定理求得DE=40cm,BC=15米,AB=AC+BC=1.5+15=16.5(米
12、)故答案为16.5m【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型10、C【解析】试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键由正方形的性质和勾股定理求出AB的长,即可得出结果解:连接AB,如图所示:根据题意得:ACB=90,由勾股定理得:AB=;故选C考点:1.勾股定理;2.展开图折叠成几何体二、填空题(共7小题,每小题3分,满分21分)11、y=x(答案不唯一)【解析】首先设一次函数解析式为:y=kx+b(k0), b取任意值后,把(1,1)代入所设的解析式里,即可得到
13、k的值,进而得到答案.【详解】解:设直线的解析式y=kx+b,令b=0,将(1,1)代入,得k=1,此时解析式为:y=x.由于b可为任意值,故答案不唯一.故答案为:y=x.(答案不唯一)【点睛】本题考查了待定系数法求一次函数解析式.12、3(a+b)(ab)【解析】(2a+b)2(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)13、2ab【解析】直接利用数轴上a,b的位置进而得出ba0,a0,再化简得出答案【详解】解:由数轴可得:ba0,a0,则|ba|+=ab+a=2ab故答
14、案为2ab【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键14、(-,1)【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k进行解答【详解】解:以原点O为位似中心,相似比为:2:1,将OAB缩小为OAB,点B(3,2)则点B(3,2)的对应点B的坐标为:(-,1),故答案为(-,1)【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k15、(2,0)【解析】根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据
15、RtABC中,OC=AB=2,即可得到点C的坐标【详解】如图所示,直线y=x与双曲线y=交于A,B两点,OA=2,AB=2AO=4,又ACB=90,RtABC中,OC=AB=2,又点C在x轴的正半轴上,C(2,0),故答案为(2,0)【点睛】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长16、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围由图象可知,此时17、1【解析】先根据相似三角形的判定得出ABCAED,再利用相似三角形的性质解答即可【详解】 又A=A,ABCAED, BC=30,DE=1,故答案为1.【点睛】考
16、查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)50【解析】试题分析:(1)由平行四边形的性质得出AB=CD,ADBC,B=D,得出1=DCE,证出AFB=1,由AAS证明ABFCDE即可;(2)由(1)得1=DCE=65,由平行四边形的性质和三角形内角和定理即可得出结果试题解析:(1)四边形ABCD是平行四边形, AB=CD,ADBC,B=D, 1=DCE,AFCE, AFB=ECB, CE平分BCD, DCE=ECB, AFB=1,在ABF和CDE中, ABFCDE(AAS);(2)由(1)得:1=ECB,DC
17、E=ECB, 1=DCE=65,B=D=180265=50考点:(1)平行四边形的性质;(2)全等三角形的判定与性质19、 (1)详见解析;(2)10.【解析】只需证明两对对应角分别相等可得两个三角形相似;故.根据相似三角形的性质求出PC长以及AP与OP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长【详解】四边形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90.由折叠可得:AP=AB,PO=BO,PAO=BAO,APO=B.APO=90.APD=90CPO=POC.D=C,APD=POC.OCPPDA.OCP与PDA的面积比为1:4,OCPD=OPPA=CPD
18、A=14=12.PD=2OC,PA=2OP,DA=2CP.AD=8,CP=4,BC=8.设OP=x,则OB=x,CO=8x.在PCO中,C=90,CP=4,OP=x,CO=8x,x2=(8x)2+42.解得:x=5.AB=AP=2OP=10.边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.20、 (1)45,;(2)满足条件的QQ0D为45或135;(3)BP的长为或;(4)CQ7.【解析】(1)由已知,可知APQ为等腰直角三角形,可得PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情
19、况讨论求解即可(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Qo,且与BD夹角为45的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值【详解】解:(1)如图,过点P做PEAD于点E由已知,APPQ,APQ90APQ为等腰直角三角形PAQPAB45设PEx,则AEx,DE4xPEABDEPDAB=解得xPAPE弧AQ的长为2故答案为45,(2)如图,过点Q做QFBD于点F由APQ90,APP0+QPD90P0AP+APP090QPDP0APAPPQAPP0P
20、QFAP0PF,P0PQFAP0P0Q0Q0DP0PQFFQ0QQ0D45当点Q在BD的右下方时,同理可得PQ0Q45,此时QQ0D135,综上所述,满足条件的QQ0D为45或135(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时过点Q做QFBD于点F,则QFBP由(2)可知,PP0BPBP0BPAB3,AD4BD5ABP0DBAAB2BP0BD9BP5BP同理,当点Q位于BD下方时,可求得BP故BP的长为或(4)由(2)可知QQ0D45则如图,点Q在过点Q0,且与BD夹角为45的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF431当点P与点D重合时
21、,点Q与点E重合,此时,CE4+37EF=5过点C做CHEF于点H由面积法可知CH=CQ的取值范围为:CQ7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想21、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元【解析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数(2)根据平均数,中位数,众数的意义回答【详解】解:(1)平均数=(31+43+52+61+71+81+101)=5.6(万元);出现次数最多的是4万
22、元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元)(2)今年每个销售人员统一的销售标准应是5万元理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成因此把5万元定为标准比较合理【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.22、 (1)见解析;(2).【解析】(1)连接OD,由DHAC,DH是O的切线,然后由平行线的判定与性质可
23、证C=ODB,由圆周角定理可得OBD=DEC,进而C=DEC,可证结论成立;(2)证明OFDAFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DHAC,由且DH是O的切线,ODH=DHA=90,ODH=DHA=90,ODCA,C=ODB,OD=OB,OBD=ODB,OBD=C,OBD=DEC,C=DEC,DC=DE;(2)解:由(1)可知:ODAC,ODF=AEF,OFD=AFE,OFDAFE,AE=1,OD=,O的半径为【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知
24、识点是解答本题的关键.23、【解析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式 .【点睛】此题主要考查了实数运算,正确化简各数是解题关键24、(1);(2).【解析】分析:(1)过点D作DHAB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算详解:(1)过点D作DHAB,垂足为点HBD平分ABC,C=90,DH=DC=x,则AD=3xC=90,AC=3,BC=4,AB=1,即CD=; (2)BD=2DE, 点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键