《黑龙江省大庆市杜尔伯特县2023年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省大庆市杜尔伯特县2023年中考冲刺卷数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1关于x的不等式x-b0恰有两个负整数解,则b的取值范围是A B C D 2如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )ABCD3已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,
2、y随x的增大而增大,且2x1时,y的最大值为9,则a的值为A1或2 B或C D14实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )Aa2Ba3CabDab5如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个64的平方根是()A2B2C8D87为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图)估计该校男生的身高在169.5c
3、m174.5cm之间的人数有( )A12B48C72D968下列运算正确的是()A(a2)4=a6Ba2a3=a6CD9矩形具有而平行四边形不具有的性质是()A对角相等B对角线互相平分C对角线相等D对边相等10如图,在四边形ABCD中,ADBC,ABC+DCB=90,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1若S2=48,S1=9,则S1的值为()A18B12C9D1二、填空题(本大题共6个小题,每小题3分,共18分)11为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的
4、一个进行检查,则两个组恰好抽到同一个小区的概率是_12如图,用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_cm13如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的正方形ABCD的周长为_14已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=1,则m的值是_15已知点P在一次函数y=kx+b(k,b为常数,且k0,b0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上(1)k的值是 ;(2)如图,
5、该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CEx轴于点E,记S1为四边形CEOB的面积,S2为OAB的面积,若=,则b的值是 16ABC中,A、B都是锐角,若sinA,cosB,则C_三、解答题(共8题,共72分)17(8分)解方程:2(x-3)=3x(x-3)18(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答
6、下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?19(8分)计算:2sin60+|3|+(2)0()120(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:a= %,并补全条形图在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?21(8分)求抛物线y=x2+x2与
7、x轴的交点坐标22(10分)如图1,在直角梯形ABCD中,动点P从B点出发,沿BCDA匀速运动,设点P运动的路程为x,ABP的面积为y,图象如图2所示(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P运动的路程x4时,ABP的面积为y ;(3)求AB的长和梯形ABCD的面积23(12分)已知二次函数y=a(x+m)2的顶点坐标为(1,0),且过点A(2,)(1)求这个二次函数的解析式;(2)点B(2,2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案24已知,抛物线y=x2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式;(2
8、)设点M在抛物线的对称轴上,当MAC是以AC为直角边的直角三角形时,求点M的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x的不等式x-b0恰有两个负整数解,可得x的负整数解为-1和-2 综合上述可得故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.2、B【解析】连接BD,利用直径得出ABD=65,进而利用圆周角定理解答即可【详解】连接BD,AB是直径,BAD=25,ABD=90-25=65,AGD=ABD=65,故选B【点睛】此题考查圆周角定理,关键是利用直径得
9、出ABD=653、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛
10、物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点4、D【解析】试题分析:A如图所示:3a2,故此选项错误;B如图所示:3a2,故此选项错误;C如图所示:1b2,则2b1,又3a2,故ab,故此选项错误;D由选项C可得,此选项正确故选D考点:实数与数轴5、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45,ABE是等腰直
11、角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(18045)=67.5,CED=1804567.5=67.5,AED=CED,故正确;AHB=(18045)=67.5,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=9067.5=22.5,ODH=67.545=22.5,OHD=ODH,OH=OD,OE=OD=OH,故正确;EBH=9067.5=22.5,EBH=OHD,又BE=DH,AEB=HDF=45BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=B
12、E、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质6、B【解析】依据平方根的定义求解即可【详解】(1)1=4,4的平方根是1故选B【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键7、C【解析】解:根据图形,身高在169.5cm174.5cm之间的人数的百分比为:,该校男生的身高在169.5cm174.5cm之间的
13、人数有30024%72(人)故选C8、C【解析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ,所以C选项正确;D、与不能合并,所以D选项错误故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.9、C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可解:矩形的性质有:矩形的对边相等且平行,矩形的对角相等,且都是直角,矩形的对角线互相平分、相等;平行四边形的性质有:平行四边形的对
14、边分别相等且平行,平行四边形的对角分别相等,平行四边形的对角线互相平分;矩形具有而平行四边形不一定具有的性质是对角线相等,故选C10、D【解析】过A作AHCD交BC于H,根据题意得到BAE=90,根据勾股定理计算即可【详解】S2=48,BC=4,过A作AHCD交BC于H,则AHB=DCBADBC,四边形AHCD是平行四边形,CH=BH=AD=2,AH=CD=1ABC+DCB=90,AHB+ABC=90,BAH=90,AB2=BH2AH2=1,S1=1故选D【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键二、填空题(本大题共6个小题,每小题3分,共1
15、8分)11、【解析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可【详解】解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为故答案为:【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比12
16、、【解析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理 即可出圆锥的高.【详解】圆心角为120,半径为6cm的扇形的弧长为4cm圆锥的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.13、1【解析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长【详解】在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点A的横坐标是0,该抛物线的对称轴为直线x=,点B是这条抛物线上的另一点,且ABx轴,点B的横坐标是3,AB=|0(3)|=3,正方形ABCD的周长为:34=1,故答案为:1【点
17、睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件14、3.【解析】可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.【详解】得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以0,得(2m+3)2-4m2=12m+90,所以m,所以m=-1舍去,综上m=3.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.15、(1)-2;(2)【解析】(1)设点P的坐标为(m,n),则点Q的坐标为(m1,n+2),
18、依题意得:,解得:k=2.故答案为2.(2)BOx轴,CEx轴,BOCE,AOBAEC.又, 令一次函数y=2x+b中x=0,则y=b,BO=b;令一次函数y=2x+b中y=0,则0=2x+b,解得:x=,即AO=.AOBAEC,且,,AE=,AO=,CE=BO=b,OE=AEAO=.OECE=|4|=4,即=4,解得:b=,或b= (舍去).故答案为.16、60【解析】先根据特殊角的三角函数值求出A、B的度数,再根据三角形内角和定理求出C即可作出判断【详解】ABC中,A、B都是锐角sinA=,cosB=,A=B=60C=180-A-B=180-60-60=60故答案为60【点睛】本题考查的是
19、特殊角的三角函数值及三角形内角和定理,比较简单三、解答题(共8题,共72分)17、.【解析】先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.18、 (1)24,1;(2) 54;(3)360.【解析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解【详解】(1)抽取的人数是3630%120(
20、人),则a12020%24,b120302436121故答案是:24,1;(2)“排球”所在的扇形的圆心角为36054,故答案是:54;(3)全校总人数是12010%1200(人),则选择参加乒乓球运动的人数是120030%360(人)19、1【解析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可【详解】原式=1+3+11=1【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行
21、另外,有理数的运算律在实数范围内仍然适用20、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为31010%=31,参加社会实践活动的天数为8天
22、的人数是:10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1,0)、(2,0)【解析】试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可试题解析:解:令,即解得:,该抛物线与轴的交点坐标为(2,0),(1,
23、0)22、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1【解析】(1)依据点P运动的路程为x,ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可【详解】(1)点P运动的路程为x,ABP的面积为y,自变量为x,因变量为y故答案为x,y;(2)由图可得:当点P运动的路程x=4时,ABP的面积为y=2故答案为2;(3)根据图象得:BC=4,此时ABP为2,ABBC=2,即AB
24、4=2,解得:AB=8;由图象得:DC=94=5,则S梯形ABCD=BC(DC+AB)=4(5+8)=1【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键23、(1)y=(x+1)1;(1)点B(1,1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可【详解】解:(1)二次函数y=a(x+m)1的顶点坐标为(1,0),m=1,二次函数y=a(x+1)1,把点A(1,)
25、代入得a=,则抛物线的解析式为:y=(x+1)1(1)把x=1代入y=(x+1)1得y=1,所以,点B(1,1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=(x+1+m)1,把B(1,1)代入得1=(1+1+m)1,解得m=1或5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换24、(1)y=x2+2x+1;(2)当MAC是直角三角形时,点M的坐标为(1,)或(1,)【解析】(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)设点M的坐标为(1,m
26、),则CM=,AC=,AM=,分ACM=90和CAM=90两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标【详解】(1)将A(1,0)、C(0,1)代入y=x2+bx+c中,得:,解得:,抛物线的解析式为y=x2+2x+1(2)y=x2+2x+1=(x1)2+4,设点M的坐标为(1,m),则CM=,AC=,AM=分两种情况考虑:当ACM=90时,有AM2=AC2+CM2,即4+m2=10+1+(m1)2,解得:m=,点M的坐标为(1,);当CAM=90时,有CM2=AM2+AC2,即1+(m1)2=4+m2+10,解得:m=,点M的坐标为(1,)综上所述:当MAC是直角三角形时,点M的坐标为(1,)或(1,)【点睛】本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点