《黑龙江省大庆市肇源县第四中学2023年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省大庆市肇源县第四中学2023年中考数学模拟精编试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)22x2=2x42已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )Ak2且k1Bk2且k1Ck=2Dk=2或13
2、下列计算正确的是()A3B329C(3)2D3+|3|64若式子在实数范围内有意义,则 x的取值范围是( )Ax1Bx1Cx1Dx15在ABC中,C90,tanA,ABC的周长为60,那么ABC的面积为()A60B30C240D1206观察下列图案,是轴对称而不是中心对称的是()ABCD7函数的图像位于( )A第一象限B第二象限C第三象限D第四象限8将20011999变形正确的是()A200021B20002+1C20002+22000+1D2000222000+19如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线
3、段CD,则端点C的坐标分别为()A(4,4)B(3,3)C(3,1)D(4,1)10已知a+b4,cd3,则(b+c)(da)的值为( )A7B7C1D1二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,APO30先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30得到线段PC,连接BC若点A的坐标为(1,0),则线段BC的长为_12关于x的方程x23x20的两根为x1,x2,则x1x2x1x2的值为_13已知 a、b 是方程 x22x10 的两个根,则 a2a+b 的值是_14在矩形ABCD中,AB=4,BC=
4、9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A,若点A到矩形较长两对边的距离之比为1:3,则AE的长为_15若3,a,4,5的众数是4,则这组数据的平均数是_16如图所示,数轴上点A所表示的数为a,则a的值是_三、解答题(共8题,共72分)17(8分)已知抛物线yax2bx若此抛物线与直线yx只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1)求此抛物线的解析式;以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y,若这两条抛物线有公共点,求n的取值范围;若a1,将此抛物线向上平移c个单位(c1),当xc时,y1;当1xc时,y1试比较ac与1的大小,并说明
5、理由18(8分)先化简,再求值:(),其中x的值从不等式组的整数解中选取19(8分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长20(8分)如图,AB是O的直径,D为O上一点,过弧BD上一点T作O的切线TC,且TCAD于点C(1)若DAB50,求ATC的度数;(2)若O半径为2,TC,求AD的长21(8分)在ABC中,AB=ACBC,点D和点A在直线BC的同侧,BD=BC,BAC=,DBC=,且+=110,连接AD,求ADB的度数(不必解答)小聪先从特
6、殊问题开始研究,当=90,=30时,利用轴对称知识,以AB为对称轴构造ABD的轴对称图形ABD,连接CD(如图1),然后利用=90,=30以及等边三角形等相关知识便可解决这个问题请结合小聪研究问题的过程和思路,在这种特殊情况下填空:DBC的形状是 三角形;ADB的度数为 在原问题中,当DBCABC(如图1)时,请计算ADB的度数;在原问题中,过点A作直线AEBD,交直线BD于E,其他条件不变若BC=7,AD=1请直接写出线段BE的长为 22(10分)如图,在ABC中,BD平分ABC,AEBD于点O,交BC于点E,ADBC,连接CD(1)求证:AOEO;(2)若AE是ABC的中线,则四边形AEC
7、D是什么特殊四边形?证明你的结论23(12分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量(件)与时间(时)的函数图象如图所示(1)求甲组加工零件的数量y与时间之间的函数关系式(2)求乙组加工零件总量的值(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?24一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点
8、B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长(结果精确到0.1 m)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C. 4a25a2=-a2 ,故不正确; D. (2x3)22x2=4x62x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.2、
9、D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+10时,函数为二次函数,根据条件可知其判别式为0,可求得k的值【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-10,即k1时,由函数与x轴只有一个交点可知,=(-4)2-4(k-1)4=0,解得k=2,综上可知k的值为1或2,故选D【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况3、C【解析】分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可【详解】=3,故选项A不合题意;329,故选项B
10、不合题意;(3)2,故选项C符合题意;3+|3|3+30,故选项D不合题意故选C【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键4、A【解析】直接利用二次根式有意义的条件分析得出答案【详解】式子在实数范围内有意义, x10, 解得:x1故选:A【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键5、D【解析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积【详解】如图所示,由tanA,设BC12x,AC5x,根据勾股定理得:AB13x
11、,由题意得:12x+5x+13x60,解得:x2,BC24,AC10,则ABC面积为120,故选D【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键6、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做
12、中心对称图形这个旋转点,就叫做对称中心7、D【解析】根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案【详解】解:函数的图象位于第四象限故选:D【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键8、A【解析】原式变形后,利用平方差公式计算即可得出答案【详解】解:原式=(2000+1)(2000-1)=20002-1,故选A【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键9、A【解析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标【详解】以原点O为位似中心,在第一象限内将线段AB扩大为原
13、来的2倍后得到线段CD,A点与C点是对应点,C点的对应点A的坐标为(2,2),位似比为1:2,点C的坐标为:(4,4)故选A【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键10、C【解析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1故选A考点:代数式的求值;整体思想二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】只要证明PBC是等腰直角三角形即可解决问题.【详解】解:APOBPO30,APB60,PAPCPB,APC30,BPC90,PBC是等腰直角三角形,OA1,APO30,PA2OA2,BCPC2,故答案为2【点
14、睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明PBC是等腰直角三角形12、5【解析】试题分析:利用根与系数的关系进行求解即可.解:x1,x2是方程x23x20的两根,x1+ x2,x1x2,x1x2x1x23+25.故答案为:5.13、1【解析】根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论【详解】a、b是方程x2-2x-1=0的两个根,a2-2a=1,a+b=2,a2-a+b=a2-2a+(a+b)=1+2=1故答案为1【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-
15、、两根之积等于是解题的关键14、或【解析】由,得,所以.再以和两种情况分类讨论即可得出答案.【详解】因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.若点在矩形ABCD的内部时,如图则GF=AB=4,由可知.又.又.若则,.则.若则,.则 .故答案或.【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点AA到矩形较长两对边的距离之比为1:3,需要分AM:AN=1:3,AM:AN=1:3和AM:AN=3:1,AM:AN=3:1这两种情况;(3)不能根据相似三角形对应边
16、成比例求出三角形的边长.15、4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可试题解析:3,a,4,5的众数是4,a=4,这组数据的平均数是(3+4+4+5)4=4.考点:1.算术平均数;2.众数16、【解析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标【详解】直角三角形的两直角边为1,2,斜边长为,那么a的值是:故答案为.【点睛】此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离三、解答题(共8题,共72分)17、(1)
17、;n1;(2)ac1,见解析.【解析】(1)1求解b1,将点(3,1)代入平移后解析式,即可;顶点为(1,)关于P(1,n)对称点的坐标是(1,2n),关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n,联立方程组即可求n的范围;(2)将点(c,1)代入yax2bx+c得到acb+11,bac+1,当1xc时,y1. c,b2ac,ac+12ac,ac1;【详解】解:(1)ax2bxx,ax2(b+1)x1,(b+1)21,b1,平移后的抛物线ya(x1)2b(x1)过点(3,1),4a2b1,a,b1,原抛物线:yx2+x,其顶点为(1,)关于P(1,n)对称点的坐标是(1,2n)
18、,关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n由得:x2+2n1有解,所以n1(2)由题知:a1,将此抛物线yax2bx向上平移c个单位(c1),其解析式为:yax2bx+c过点(c,1),ac2bc+c1 (c1),acb+11,bac+1,且当x1时,yc,对称轴:x,抛物线开口向上,画草图如右所示由题知,当1xc时,y1c,b2ac,ac+12ac,ac1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键18、-【解析】先化简,再解不等式组确定x的值,最后代入求值即可.【详解】(),=解不等式组,可得:2x2,x=1,0,1,
19、2,x=1,0,1时,分式无意义,x=2,原式=19、(1)证明见解析;(2) ;【解析】(1)根据正方形的性质得到GAD=EAB,证明GADEAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BDAC,AC=BD=5,根据勾股定理计算即可【详解】(1)在GAD和EAB中,GAD=90+EAD,EAB=90+EAD,GAD=EAB,在GAD和EAB中,GADEAB,EB=GD; (2)四边形ABCD是正方形,AB=5,BDAC,AC=BD=5,DOG=90,OA=OD=BD=,AG=2 ,OG=OA+AG=,由勾股定理得,GD=,EB=【点睛】本题考查的是正方形的性质、全等三角形的判定
20、和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键20、(2)65;(2)2【解析】试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CTOT,CT为O的切线;(2)证明四边形OTCE为矩形,求得OE的长,在直角OAE中,利用勾股定理即可求解试题解析:(2)连接OT,OA=OT,OAT=OTA,又AT平分BAD,DAT=OAT,DAT=OTA,OTAC,又CTAC,CTOT,CT为O的切线;(2)过O作OEAD于E,则E为AD中点,又CTAC,OECT,四边形OTCE为矩形,CT=,OE=,又OA=2,在RtOAE中,AE,AD=2AE=2考点:2切线的判
21、定与性质;2勾股定理;3圆周角定理21、(1)DBC是等边三角形,ADB=30(1)ADB=30;(3)7+或7【解析】(1)如图1中,作ABDABD,BDBD,连接CD,AD,由ABDABD,推出DBC是等边三角形;借助的结论,再判断出ADBADC,得ADBADC,由此即可解决问题(1)当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1)(3)第种情况:当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第种情况:当060时,如图4中,作ABDABD,BDBD,连接CD
22、,AD证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论【详解】(1)如图1中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,BAC=90,ABC=45,DBC=30,ABD=ABCDBC=15,在ABD和ABD中,ABDABD,ABD=ABD=15,ADB=ADB,DBC=ABD+ABC=60,BD=BD,BD=BC,BD=BC,DBC是等边三角形,DBC是等边三角形,DB=DC,BDC=60,在ADB和ADC中,ADBADC,ADB=ADC,ADB=BDC=30,ADB=30(1)DBCABC,60110,如图3中,作ABD=ABD,BD=BD,连接CD,AD
23、,AB=AC,ABC=ACB,BAC=,ABC=(180)=90,ABD=ABCDBC=90,同(1)可证ABDABD,ABD=ABD=90,BD=BD,ADB=ADBDBC=ABD+ABC=90+90=180(+),+=110,DBC=60,由(1)可知,ADBADC,ADB=ADC,ADB=BDC=30,ADB=30(3)第情况:当60110时,如图31,由(1)知,ADB=30,作AEBD,在RtADE中,ADB=30,AD=1,DE=,BCD是等边三角形,BD=BC=7,BD=BD=7,BE=BDDE=7;第情况:当060时,如图4中,作ABD=ABD,BD=BD,连接CD,AD同理可
24、得:ABC=(180)=90,ABD=DBCABC=(90),同(1)可证ABDABD,ABD=ABD=(90),BD=BD,ADB=ADB,DBC=ABCABD=90(90)=180(+),DB=DC,BDC=60同(1)可证ADBADC,ADB=ADC,ADB+ADC+BDC=360,ADB=ADB=150,在RtADE中,ADE=30,AD=1,DE=,BE=BD+DE=7+,故答案为:7+或7【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型22、(1)详见解析;(
25、2)平行四边形.【解析】(1)由“三线合一”定理即可得到结论;(2)由ADBC,BD平分ABC,得到ADB=ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论【详解】证明:(1)BD平分ABC,AEBD,AO=EO;(2)平行四边形,证明:ADBC,ADB=ABD,AD=AB,OA=OE,OBAE,AB=BE,AD=BE,BE=CE,AD=EC,四边形AECD是平行四边形【点睛】考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.23、 (1)见解析(2)300(3)2
26、小时【解析】解:(1)设甲组加工的零件数量y与时间x的函数关系式为根据题意,得,解得所以,甲组加工的零件数量y与时间x的函数关系式为:. (2)当时,因为更换设备后,乙组工作效率是原来的2倍,所以,解得 (3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为当0x2时,解得舍去当2x2.8时,解得舍去当2.8x4.8时,解得所以,经过3小时恰好装满第1箱当3x4.8时,解得舍去当4.8x6时解得因为53=2,所以,再经过2小时恰好装满第2箱24、路灯的高CD的长约为6.1 m.【解析】设路灯的高CD为xm,CDEC,BNEC,CDBN,ABNACD,同理,EAMECD,又EAMA,ECDCxm,解得x6.1256.1路灯的高CD约为6.1m