甘肃省兰州市教管理第五片区2022-2023学年中考数学最后一模试卷含解析.doc

上传人:lil****205 文档编号:88309640 上传时间:2023-04-25 格式:DOC 页数:19 大小:997.50KB
返回 下载 相关 举报
甘肃省兰州市教管理第五片区2022-2023学年中考数学最后一模试卷含解析.doc_第1页
第1页 / 共19页
甘肃省兰州市教管理第五片区2022-2023学年中考数学最后一模试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《甘肃省兰州市教管理第五片区2022-2023学年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省兰州市教管理第五片区2022-2023学年中考数学最后一模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)12017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A7.49107B74.9106C7.49106D0.7491072甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲

2、命中的环数(环)67868乙命中的环数(环)510767根据以上数据,下列说法正确的是( )A甲的平均成绩大于乙B甲、乙成绩的中位数不同C甲、乙成绩的众数相同D甲的成绩更稳定3如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )ABCD4如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )A2个B3个C4个D5个5不等式的最小整数解是( )A3B2C1D26如图,已知,用尺规作图作第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )A以点为圆心,长为半径画弧,与第1步所

3、画的弧相交于点B以点为圆心,长为半径画弧,与第1步所画的弧相交于点C以点为圆心,长为半径画弧,与第1步所画的弧相交于点D以点为圆心,长为半径画弧,与第1步所画的弧相交于点7已知正比例函数的图象经过点,则此正比例函数的关系式为( )ABCD8某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是()A在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B掷一枚质地均匀的正六面体骰子,向上一面的点数是4C一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上9下列事件中,必然事件

4、是()A若ab=0,则a=0 B若|a|=4,则a=4C一个多边形的内角和为1000D若两直线被第三条直线所截,则同位角相等10抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A中位数 B众数 C平均数 D方差11若O的半径为5cm,OA=4cm,则点A与O的位置关系是( )A点A在O内B点A在O上C点A在O外D内含12若代数式的值为零,则实数x的值为()Ax0Bx0Cx3Dx3二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x的方程有增根,则m的值是 14在AB

5、C中,MNBC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_15如图,在ABC中,ACB=90,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_16自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_17关于x的不等式组的整数解有4个,那么a的取值范围( )A4a6B4a6C4a6D2a418甲,乙两家汽车

6、销售公司根据近几年的销售量分别制作了如图所示的统计图,从20142018年,这两家公司中销售量增长较快的是_公司(填“甲”或“乙”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)计算:|3|2sin30+()2(2)化简:.20(6分)(1)(ab)2a(a2b)+(2a+b)(2ab)(2)(m1)21(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学

7、生能在1.5小时内完成家庭作业?22(8分)如图,AB为O直径,C为O上一点,点D是的中点,DEAC于E,DFAB于F(1)判断DE与O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度23(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角ABC为14,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因(参考数据:sin14=0.24,cos14=0.97,tan14=0.25)24(10分)如图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧(1)求证:AB为C的切线(2

8、)求图中阴影部分的面积25(10分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF,求证:CGBF26(12分)如图,AD是ABC的中线,CFAD于点F,BEAD,交AD的延长线于点

9、E,求证:AF+AE=2AD27(12分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变

10、成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】7490000=7.49106.故选C.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、D【解析】根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可【详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环

11、,乙的众数是7环,甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:(环),乙命中的环数的平均数为:(环),甲的平均数等于乙的平均数,故选项A错误;甲的方差=(67)2+(77)2+(87)2+(67)2+(87)2=0.8;乙的方差=(57)2+(107)2+(77)2+(67)2+(77)2=2.8,因为2.80.8,所以甲的稳定性大,故选项D正确.故选D.【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定同时还考查了众

12、数的中位数的求法.3、A【解析】试题解析:一个斜坡长130m,坡顶离水平地面的距离为50m,这个斜坡的水平距离为:=10m,这个斜坡的坡度为:50:10=5:1故选A点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式4、C【解析】分为三种情况:AP=OP,AP=OA,OA=OP,分别画出即可【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C

13、.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解5、B【解析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】,不等式的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.6、D【解析】根据作一个角等于已知角的作法即可得出结论【详解】解:用尺规作图作AOC=2AOB的第一步是以点O为圆心,以任意长为半径画弧,分别交OA、OB于点E、F,第二步的作图痕迹的作法是以

14、点F为圆心,EF长为半径画弧故选:D【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键7、A【解析】根据待定系数法即可求得【详解】解:正比例函数y=kx的图象经过点(1,3),3=k,即k=3,该正比例函数的解析式为:y=3x故选A【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题8、B【解析】根据统计图可知,试验结果在0.17附近波动,即其概率P0.17,计算四个选项的概率,约为0.17者即为正确答案【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的

15、点数是4的概率是0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是 ,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是 ,故D选项错误,故选B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率频率=所求情况数与总情况数之比熟练掌握概率公式是解题关键9、B【解析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案【详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=4,是必然事件,故此选项正确;C、一个多边形的内角和为1000,是不可能事件,故此选项错误;D、若两

16、直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键10、A【解析】7人成绩的中位数是第4名的成绩参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.11、A【解析】直接利用点与圆的位置关系进而得出答案【详解】解:O的半径为5cm,OA=4cm,点A与

17、O的位置关系是:点A在O内故选A【点睛】此题主要考查了点与圆的位置关系,正确点P在圆外dr,点P在圆上d=r,点P在圆内dr是解题关键12、A【解析】根据分子为零,且分母不为零解答即可.【详解】解:代数式的值为零,x0,此时分母x-30,符合题意.故选A【点睛】本题考查了分式的值为零的条件若分式的值为零,需同时具备两个条件:分子的值为0,分母的值不为0,这两个条件缺一不可.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】方程两边都乘以最简公分母(x2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值

18、:方程两边都乘以(x2)得,2xm=2(x2)分式方程有增根,x2=1,解得x=222m=2(22),解得m=114、1【解析】MNBC,AMNABC,即,MN=1.故答案为1.15、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点

19、睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图16、【解析】【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,由题意得:x+(2x+1.82)=50,故答案为x+(2x+1.82)=50.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.17、C【解析】分析:先根据一元一次不等式组解出x的取值,再根据不等式组的整数解有4个,求出实数a的取值范围详解: 解不等式,得

20、 解不等式,得 原不等式组的解集为 只有4个整数解,整数解为: 故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.18、甲【解析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从20142018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从20142018年,乙公司中销售量增长了300辆所以这两

21、家公司中销售量增长较快的是甲公司,故答案为:甲【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)2;(2) xy【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=342+4=2;(2)原式=xy点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决

22、此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1) ;(2) 【解析】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(ab)2a(a2b)+(2a+b)(2ab)=a22ab+b2a2+2ab+4a2b2=4a2;(2)= = = =21、(1)补图见解析;(2)27;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360乘以对应的比例即可求

23、解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:1025%=40(人),在B类的人数是:4030%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360=27;(3)能在1.5小时内完成家庭作业的人数是:2000(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图22、(1)DE与O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与O相切证明:连接OD、AD,点D是的中点,=,DAO=DAC,OA=OD,DAO=ODA,DAC=ODA,ODAE,DEAC,DEOD,DE与O相切(2) 连接BC,根据ODF与ABC相似,求得AC的

24、长AC=823、客车不能通过限高杆,理由见解析【解析】根据DEBC,DFAB,得到EDF=ABC=14在RtEDF中,根据cosEDF=,求出DF的值,即可判断.【详解】DEBC,DFAB,EDF=ABC=14在RtEDF中,DFE=90,cosEDF=,DF=DEcosEDF=2.55cos142.550.972.1限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,客车不能通过限高杆【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.24、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出

25、即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键25、 (1)y=x24x3;y=x;t= 或;(2)证明见解析.【解析】(1)把A(3,0),B(1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;由题意得OP=

26、2t,P(2t,0),过Q作QHx轴于H,得OH=HQ=t,可得Q(t,t),直线 PQ为yx2t,过M作MGx轴于G,由,则2PGGH,由,得, 于是,解得,从而求出M(3t,t)或M(),再分情况计算即可; (2) 过F作FHx轴于H,想办法证得tanCAG=tanFBH,即CAG=FBH,即得证.【详解】解:(1)把A(3,0),B(1,0)代入二次函数解析式得解得y=x24x3;由AC=OA知C点坐标为(-3,-3),直线OC的解析式y=x;OP=2t,P(2t,0),过Q作QHx轴于H,QO=,OH=HQ=t, Q(t,t),PQ:yx2t,过M作MGx轴于G,,2PGGH,即, ,

27、 M(3t,t)或M()当M(3t,t)时:,当M()时:,综上:或(2)设A(m,0)、B(n,0),m、n为方程x2bxc=0的两根,m+n=b,mnc,yx2+(m+n)xmn(xm)(xn),E、F在抛物线上,设、,设EF:ykx+b, , ,令xmAC=,又,tanCAG=,另一方面:过F作FHx轴于H, tanFBH=tanCAG=tanFBH CAG=FBH CGBF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.26、证明见解析.【解析】由题意易用角角边证明BDECDF,得到DF=DE,再用等量代换的思想用含有AE和AF的

28、等式表示AD的长【详解】证明:CFAD于,BEAD,BECF,EBD=FCD,又AD是ABC的中线,BD=CD,在BED与CFD中, ,BEDCFD(AAS)ED=FD,又AD=AF+DF,AD=AE-DE,由+得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化27、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四

29、边形的面积最大值;(3)本题应分情况讨论:过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【详解】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x-3=-3,解得x1=0,x2=3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁