《浙江省杭州市余杭区重点名校2023年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市余杭区重点名校2023年中考联考数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中,正确的有()A4个B3个C2个D1个2剪纸是我国传统的民间艺术下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD3下列图案中
2、,既是轴对称图形又是中心对称图形的是()ABCD4如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A(a+b)(ab)a2b2B(ab)2a22ab+b2C(a+b)2a2+2ab+b2D(a+b)2(ab)2+4ab5如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A0.7米B1.5米C2.2米D2.4米6若等式(-5)5=1成立,则内的运算符号为( )A+BCD7如图的立体图形,从左面看可能是()ABCD
3、8下列标志中,可以看作是轴对称图形的是( )ABCD9工人师傅用一张半径为24cm,圆心角为150的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为()cmABCD10如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()ABCD11如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()ABCD12下列各运算中,计算正确的是()Aa12a3=a4B(3a2)3=9a6C(ab
4、)2=a2ab+b2D2a3a=6a2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在RtABC中,ACB90,A30,BC2,点D是边AB上的动点,将ACD沿CD所在的直线折叠至CDA的位置,CA交AB于点E若AED为直角三角形,则AD的长为_14分解因式:4m216n2_15如图1,在ABC中,ACB90,BC2,A30,点E,F分别是线段BC,AC的中点,连结EF(1)线段BE与AF的位置关系是 , (2)如图2,当CEF绕点C顺时针旋转a时(0a180),连结AF,BE,(1)中的结论是否仍然成立如果成立,请证明;如果不成立,请说明理由(3)如图3,当CEF绕点C顺时
5、针旋转a时(0a180),延长FC交AB于点D,如果AD62,求旋转角a的度数16分解因式:=_17如图,在边长为9的正三角形ABC中,BD=3,ADE=60,则AE的长为18已知二次函数yax2+bx+c(a0)的图象与x轴交于(x1,0),且1x10,对称轴x1如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1的实数)其中所有结论正确的是_(填写番号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k
6、0,x0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k0,x0)的图象于点P,过点P作PFy轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒(1)求该反比例函数的解析式(2)求S与t的函数关系式;并求当S=时,对应的t值(3)在点E的运动过程中,是否存在一个t值,使FBO为等腰三角形?若有,有几个,写出t值20(6分)已知:如图,E是BC上一点,ABEC,ABCD,BCCD求证:ACED21(6分)如图1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P
7、,N分别为DE,DC,BC的中点(1)观察猜想图1中,线段PM与PN的数量关系是 ,位置关系是 ;(2)探究证明把ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由;(3)拓展延伸把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值22(8分)如图,在RtABC中ABC=90,AC的垂直平分线交BC于D点,交AC于E点,OC=OD(1)若,DC=4,求AB的长;(2)连接BE,若BE是DEC的外接圆的切线,求C的度数23(8分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小
8、球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的_倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?24(10分)解不等式组,并将解集在数轴上表示出来25(10分) “千年古都,大美西安”某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大
9、雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆)下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数26(12分)27(12分)平面直角坐标系xOy(如图),抛物线y=x2+2mx+3m2(m0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC(1)当点C(0,3)时,求这条抛物线的表
10、达式和顶点坐标;求证:DCE=BCE;(2)当CB平分DCO时,求m的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键2、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不
11、是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称图形;轴对称图形3、B【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重
12、合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答【详解】图1中阴影部分的面积为:(ab)2;图2中阴影部分的面积为:a22ab+b2;(ab)2a22ab+b2,故选B【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键5、C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选C【点睛】
13、本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.6、D【解析】根据有理数的除法可以解答本题【详解】解:(5)5=1,等式(5)5=1成立,则内的运算符号为,故选D【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法7、A【解析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.8、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称
14、图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意故选D【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合9、B【解析】分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高详解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,则2r=,解得:r=10,故这个圆锥的高为:(cm)故选B点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键10、D【
15、解析】连接OC,过点A作ADCD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知AOC是等边三角形,可得AOC=BOC=60,故ACO与BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OAsin60=2=,因此可求得S阴影=S扇形AOB2SAOC=22=2故选D点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键11、C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题【详解】解:由题意可得,y=,当x=40时,y=6,故选C【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此
16、题的关键12、D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a22ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、3或1【解析】分两种情况:情况一:如图一所示,当ADE=90时;情况二:如图二所示,当AED=90时.【详解】解:如图,
17、当ADE=90时,AED为直角三角形,A=A=30,AED=60=BEC=B,BEC是等边三角形,BE=BC=1,又RtABC中,AB=1BC=4,AE=1,设AD=AD=x,则DE=1x,RtADE中,AD=DE,x=(1x),解得x=3,即AD的长为3;如图,当AED=90时,AED为直角三角形,此时BEC=90,B=60,BCE=30,BE=BC=1,又RtABC中,AB=1BC=4,AE=41=3,DE=3x,设AD=AD=x,则RtADE中,AD=1DE,即x=1(3x),解得x=1,即AD的长为1;综上所述,即AD的长为3或1故答案为3或1【点睛】本题考查了翻折变换,勾股定理,等腰
18、直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.14、4(m+2n)(m2n)【解析】原式提取4后,利用平方差公式分解即可【详解】解:原式=4( )故答案为【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法15、(1)互相垂直;(2)结论仍然成立,证明见解析;(3)135【解析】(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;(2)利用已知得出BECAFC,进而得出1=2,即可得出答案;(3)过点D作DHBC于H,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出DCA
19、=45,进而得出答案【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;ACB=90,BC=2,A=30,AC=2,点E,F分别是线段BC,AC的中点,=;(2)如图2,点E,F分别是线段BC,AC的中点,EC=BC,FC=AC,BCE=ACF=,BECAFC,1=2,延长BE交AC于点O,交AF于点MBOC=AOM,1=2BCO=AMO=90BEAF;(3)如图3,ACB=90,BC=2,A=30AB=4,B=60过点D作DHBC于HDB=4-(6-2)=2-2,BH=-1,DH=3-,又CH=2-(-1)=3-,CH=BH,HCD=45,DCA=45,=180-45=13516、
20、【解析】原式提取2,再利用完全平方公式分解即可【详解】原式【点睛】先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法17、7【解析】试题分析:ABC是等边三角形,B=C=60,AB=BCCD=BCBD=93=6,;BAD+ADB=120ADE=60,ADB+EDC=120DAB=EDC又B=C=60,ABDDCE,即18、【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题【详解】解:由图象可得,抛物线开口向下,则a0,对称轴在y轴右侧,则与a的符号相反,故b0.a0,b0,c0,abc0,故错误,当x=-1时,y=a-b+c0,得ba
21、+c,故错误,二次函数y=ax2+bx+c(a0)的图象与x轴交于(x1,0),且-1x10,对称轴x=1,x=2时的函数值与x=0的函数值相等,x=2时,y=4a+2b+c0,故正确,x=-1时,y=a-b+c0,-=1,2a-2b+2c0,b=-2a,-b-2b+2c0,2c3b,故正确,由图象可知,x=1时,y取得最大值,此时y=a+b+c,a+b+cam2+bm+c(m1),a+bam2+bma+bm(am+b),故正确,故答案为:【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答三、解答题:(本大题共9个
22、小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=(x0);(2)S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当S=时,对应的t值为或6;(3)当t=或或3时,使FBO为等腰三角形【解析】(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)=9-去分析求解即可求得答案;(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案【详解】解:(1)正方形OABC的面积为9,点B的坐标
23、为:(3,3),点B在反比例函数y=(k0,x0)的图象上,3=,即k=9,该反比例函数的解析式为:y= y=(x0);(2)根据题意得:P(t,),分两种情况:当点P1在点B的左侧时,S=t(3)=3t+9(0t3);若S=,则3t+9=,解得:t=;当点P2在点B的右侧时,则S=(t3)=9;若S=,则9=,解得:t=6;S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当S=时,对应的t值为或6;(3)存在若OB=BF=3,此时CF=BC=3,OF=6,6=,解得:t=;若OB=OF=3,则3=,解得:t= ;若BF=OF,此时点F与C重合,t=3;当t=或或3时,使FBO为
24、等腰三角形【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用20、见解析【解析】试题分析:已知ABCD,根据两直线平行,内错角相等可得B=ECD,再根据SAS证明ABCECD全,由全等三角形对应边相等即可得AC=ED试题解析:ABCD,B=DCE在ABC和ECD中,ABCECD(SAS),AC=ED考点:平行线的性质;全等三角形的判定及性质21、 (1)PMPN, PMPN;(2)PMN是等腰直角三角形,理由详见解析;(3)【解析】(1)利用三角形的中位线得出PMCE,PNBD,进而判断出BD
25、CE,即可得出结论,再利用三角形的中位线得出PMCE得出DPMDCA,最后用互余即可得出结论;(2)先判断出ABDACE,得出BDCE,同(1)的方法得出PMBD,PNBD,即可得出PMPN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,PMN的面积最大,进而求出AN,AM,即可得出MN最大AM+AN,最后用面积公式即可得出结论方法2、先判断出BD最大时,PMN的面积最大,而BD最大是AB+AD14,即可【详解】解:(1)点P,N是BC,CD的中点,PNBD,PNBD,点P,M是CD,DE的中点,PMCE,PMCE,ABAC,ADAE,BDCE,PMPN,PNBD,DPNADC
26、,PMCE,DPMDCA,BAC90,ADC+ACD90,MPNDPM+DPNDCA+ADC90,PMPN,故答案为:PMPN,PMPN,(2)由旋转知,BADCAE,ABAC,ADAE,ABDACE(SAS),ABDACE,BDCE,同(1)的方法,利用三角形的中位线得,PNBD,PMCE,PMPN,PMN是等腰三角形,同(1)的方法得,PMCE,DPMDCE,同(1)的方法得,PNBD,PNCDBC,DPNDCB+PNCDCB+DBC,MPNDPM+DPNDCE+DCB+DBCBCE+DBCACB+ACE+DBCACB+ABD+DBCACB+ABC,BAC90,ACB+ABC90,MPN9
27、0,PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,PMN是等腰直角三角形,MN最大时,PMN的面积最大,DEBC且DE在顶点A上面,MN最大AM+AN,连接AM,AN,在ADE中,ADAE4,DAE90,AM2,在RtABC中,ABAC10,AN5,MN最大2+57,SPMN最大PM2MN2(7)2方法2、由(2)知,PMN是等腰直角三角形,PMPNBD,PM最大时,PMN面积最大,点D在BA的延长线上,BDAB+AD14,PM7,SPMN最大PM272【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.22、(1);(2)30 【解析】(1)由于DE垂直平
28、分AC,那么AE=EC,DEC=90,而ABC=DEC=90,C=C,易证,ABCDEC,A=CDE,于是sinCDE=sinA,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于DEC=90,那么EDC+C=90,又BE是切线,那么BEO=90,于是EOB+EBC=90,而BE是直角三角形斜边上的中线,那么BE=CE,于是EBC=C,从而有EOB=EDC,又OE=OD,易证DEO是等边三角形,那么EDC=60,从而可求C【详解】解:(1)AC的垂直平分线交BC于D点,交AC于E点,DEC=90,AE=EC
29、,ABC=90,C=C,A=CDE,ABCDEC,sinCDE=,AB:AC=DE:DC,DC=4,ED=3,DE=,AC=6,AB:6=:4,AB=;(2)连接OE,DEC=90,EDC+C=90,BE是O的切线,BEO=90,EOB+EBC=90,E是AC的中点,ABC=90,BE=EC,EBC=C,EOB=EDC,又OE=OD,DOE是等边三角形,EDC=60,C=30【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质解题的关键是连接OE,构造直角三角形23、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球【解析】
30、(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答【详解】解:(1)依题意得:(3+2)(32)5故答案是:5;(2)依题意得:a+2+1a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a1+x2axa+1所以 a+3xa+3(a+1)2答:第三次变化后中间小桶中有2个小球【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答24、原不等式组的解集为4x1,在数轴上表示见解析【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解
31、不等式,得x4,解不等式,得x1,把不等式的解集在数轴上表示如图,原不等式组的解集为4x1点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键25、(1)40;(2)想去D景点的人数是8,圆心角度数是72;(3)280.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B景点的人数所占的百分比即可【详解】(1)被调查的学生总人数为820%=40(人);(2
32、)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为360=72;(3)800=280,所以估计“醉美旅游景点B“的学生人数为280人【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来从条形图可以很容易看出数据的大小,便于比较也考查了扇形统计图和利用样本估计总体26、2x2【解析】分别解不等式,进而得出不等式组的解集【详解】解得:x2解得:x2故不等式组的解集为:2x2【点睛】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关
33、键27、(1)y=x2+2x+3;D(1,4);(2)证明见解析;(3)m=;【解析】(1)把C点坐标代入y=x2+2mx+3m2可求出m的值,从而得到抛物线解析式,然后把一般式配成顶点式得到D点坐标;如图1,先解方程x2+2x+3=0得B(3,0),则可判断OCB为等腰直角三角形得到OBC=45,再证明CDE为等腰直角三角形得到DCE=45,从而得到DCE=BCE;(2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程x2+2mx+3m2=0得B(3m,0),同时确定C(0,3m2),再利用相似比
34、表示出GF=2m2,则DG=2m2,接着证明DCG=DGC得到DC=DG,所以m2+(4m23m2)2=4m4,然后解方程可求出m【详解】(1)把C(0,3)代入y=x2+2mx+3m2得3m2=3,解得m1=1,m2=1(舍去),抛物线解析式为y=x2+2x+3; 顶点D为(1,4); 证明:如图1,当y=0时,x2+2x+3=0,解得x1=1,x2=3,则B(3,0),OC=OB,OCB为等腰直角三角形,OBC=45,CE直线x=1,BCE=45,DE=1,CE=1,CDE为等腰直角三角形,DCE=45,DCE=BCE;(2)解:抛物线的对称轴交x轴于F点,交直线BC于G点,如图2, 抛物
35、线的对称轴为直线x=m,顶点D的坐标为(m,4m2),当y=0时,x2+2mx+3m2=0,解得x1=m,x2=3m,则B(3m,0),当x=0时,y=x2+2mx+3m2=3m2,则C(0,3m2),GFOC,即 解得GF=2m2,DG=4m22m2=2m2,CB平分DCO,DCB=OCB,OCB=DGC,DCG=DGC,DC=DG,即m2+(4m23m2)2=4m4, 而m0, 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式