浙江省余姚市2023届高三第四次模拟考试数学试卷含解析.doc

上传人:lil****205 文档编号:88308641 上传时间:2023-04-25 格式:DOC 页数:20 大小:1.96MB
返回 下载 相关 举报
浙江省余姚市2023届高三第四次模拟考试数学试卷含解析.doc_第1页
第1页 / 共20页
浙江省余姚市2023届高三第四次模拟考试数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《浙江省余姚市2023届高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省余姚市2023届高三第四次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1中国古代数学名著九章算术中记载了公元前344年商鞅督造的一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( ) A3B3.4C3.8D42将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是( )ABCD3已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD4已知实数,则的大小关系是()ABCD5双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD6设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,

3、则;若,则;若,则.其中正确的是( )ABCD7是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8若、满足约束条件,则的最大值为( )ABCD9已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为ABCD10在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则( )ABCD11已知变量,满足不等式组,则的最小值为( )ABCD12一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )ABCD二、填空题:本题共4小题,每小

4、题5分,共20分。13在中,角所对的边分别为,为的面积,若,则的形状为_,的大小为_14如图,在平面四边形中,点,是椭圆短轴的两个端点,点在椭圆上,记和的面积分别为,则_.15的展开式中,的系数为_.16设满足约束条件,则目标函数的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.18(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,且,求BD的长度.19(

5、12分)在中,内角,所对的边分别是,()求的值;()求的值20(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是()求椭圆的标准方程;()过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程21(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:22(10分)已知ABC的内角A,B,C的对边分别为a,b,c,若c2a,bsinBasinAasinC()求sinB的值;()求sin(2B

6、+)的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.2、D【解析】由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,函数.在上,故,即的值域是,故选:D

7、.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题3、B【解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线方程.4、B【解析】根据,利用指数函数对数函数的单调性即可得出【详解】解:,故选:B【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题5、A【解析】根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.6、C【解析】根据线面平行或垂直的有关定理逐一判断即可.【详解】解:、也可

8、能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【点睛】考查线面平行或垂直的判断,基础题.7、B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.8、C【解析】作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示由,得,平移直线,当直线经过点时,该

9、直线在轴上的截距最大,此时取最大值,即.故选:C.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.9、D【解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选D10、B【解析】计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,则,由,得,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.11、B【解析】先根据约束条件画出

10、可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.12、B【解析】根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以 , 到 的距离为,同理到 的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、等腰三角形 【解析】

11、根据正弦定理可得,即的形状为等腰三角形由余弦定理可得,即故答案为等腰三角形,14、【解析】依题意易得A、B、C、D四点共圆且圆心在x轴上,然后设出圆心,由圆的方程与椭圆方程联立得到B的横坐标,进一步得到D横坐标,再由计算比值即可.【详解】因为,所以A、B、C、D四点共圆,直径为,又A、C关于x轴对称,所以圆心E在x轴上,设圆心E为,则圆的方程为,联立椭圆方程消y得,解得,故B的横坐标为,又B、D中点是E,所以D的横坐标为,故.故答案为:.【点睛】本题考查椭圆中的四点共圆及三角形面积之比的问题,考查学生基本计算能力及转化与化归思想,本题关键是求出B、D横坐标,是一道有区分度的压轴填空题.15、1

12、6【解析】要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.16、【解析】根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.【详解】由满足约束条件,画出可行域如图所示阴影部分:将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点 此时,目标函数 取得最小值,最小值为故答案为:-1【点睛】本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3

13、)不能,证明见解析【解析】(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),曲线在点处的切线方程为,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,解得,当时,对任意,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,则关于的方程有三个不同的实根,等价于函数有三个零点,当时,记,则,在单调递增,即,在单调递增,至多有一个零点;当时

14、,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程不可能有三个不同的实根.【点睛】本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.18、(1)(2)【解析】(1)根据共线得到,利用正弦定理化简得到答案.(2)根据余弦定理得到,再利用余弦定理计算得到答案.【详解】(1)与共线,.即,即,.(2),在中,由余弦定理得:,.则或(舍去).,.在中,由余弦定理得:,.【点睛】本题考查了向量共线,正弦定理,余弦定理,意在考查学生的综合应用能力.19、()()【解析

15、】()根据正弦定理先求得边c,然后由余弦定理可求得边b;()结合二倍角公式及和差公式,即可求得本题答案.【详解】()因为,由正弦定理可得,又,所以,所以根据余弦定理得,解得,;()因为,所以,则【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.20、();()面积的最小值为9,.【解析】()由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;()设直线方程为,设,把直线方程代入抛物线方程,化为的一元二次方程,由韦达定理得,由弦长公式得,同理求得点的横坐标,于是可得,将面积表示为参数的函数,利用导数可求得最大值.【详解】()椭圆:

16、,长轴的右端点与抛物线:的焦点重合,又椭圆的离心率是,椭圆的标准方程为()过点的直线的方程设为,设,联立得,过且与直线垂直的直线设为,联立得,故,面积令,则,令,则,即时,面积最小,即当时,面积的最小值为9,此时直线的方程为【点睛】本题考查椭圆方程的求解,抛物线中弦长的求解,涉及三角形面积范围问题,利用导数求函数的最值问题,属综合困难题.21、(1);(2)详见解析.【解析】(1)由短轴长可知,设,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示

17、出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,即椭圆的标准方程为(2)当直线斜率不存在时,不等式成立.当直线斜率存在时,设由得,由化简,得令,则当且仅当时取等号当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题22、() ()【解析】()根据条件由正弦定理得,又c2a,所以,由余弦定理算出,进而算出;()由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】() bsinBasinAasinC,所以由正弦定理得,又c2a,所以,由余弦定理得:,又,所以;(),.【点睛】本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁