浙江省杭州市余杭区重点名校2022-2023学年中考五模数学试题含解析.doc

上传人:lil****205 文档编号:88308648 上传时间:2023-04-25 格式:DOC 页数:21 大小:800KB
返回 下载 相关 举报
浙江省杭州市余杭区重点名校2022-2023学年中考五模数学试题含解析.doc_第1页
第1页 / 共21页
浙江省杭州市余杭区重点名校2022-2023学年中考五模数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《浙江省杭州市余杭区重点名校2022-2023学年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市余杭区重点名校2022-2023学年中考五模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得ABC为等腰直角三角形,则这样的点C有( )A6个B7个C8个D9个2如图,E,B,F,C

2、四点在一条直线上,EBCF,AD,再添一个条件仍不能证明ABCDEF的是()AABDEBDFACCEABCDABDE3某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A24.5,24.5B24.5,24C24,24D23.5,244的绝对值是()ABCD5互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A120元B100元C80元D60元6已知a1,点A(x

3、1,2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正确的是()Ax1x2x3Bx1x3x2Cx3x1x2Dx2x3x17如图,在矩形ABCD中AB,BC1,将矩形ABCD绕顶点B旋转得到矩形ABCD,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为()ABCD8苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元9“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根苏科版数学九年级

4、(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无实数根10将弧长为2cm、圆心角为120的扇形围成一个圆锥的侧面,则这个圆锥的高是()A cmB2 cmC2cmD cm11已知抛物线y=(x)(x)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+M2018N2018的值是()ABCD12如图,在ABC中,点D在AB边上,DEBC,与边AC交于点E,连结BE,记ADE,BCE的面积分别为S1,S2,()A若2ADAB,则3S12S2B若2ADAB,则3S12S2C若2ADAB,

5、则3S12S2D若2ADAB,则3S12S2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,等腰ABC中,AB=AC,DBC=15,AB的垂直平分线MN交AC于点D,则A的度数是 14函数y中,自变量x的取值范围是_15如图,随机闭合开关,中的两个,能让两盏灯泡和同时发光的概率为_16一个圆锥的侧面展开图是半径为6,圆心角为120的扇形,那么这个圆锥的底面圆的半径为_17设ABC的面积为1,如图,将边BC、AC分别2等分,BE1、AD1相交于点O,AOB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用

6、含n的代数式表示,其中n为正整数)18完全相同的3个小球上面分别标有数2、1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)阅读材料,解答下列问题:神奇的等式当ab时,一般来说会有a2+ba+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:()2+=+,()2+=+,()2+=+()2,()2+=+()2,(1)特例验证:请再写出一个具有上述特征的等式: ;(2)猜想结论:用n(n为正整数)表示分数的分母,上述等式可表示

7、为: ;(3)证明推广:(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;等式()2+=+()2(m,n为任意实数,且n0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由20(6分)如图,在Rt中,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长21(6分)如图1,ABC与CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN

8、,MN(1)观察猜想:图1中,PM与PN的数量关系是 ,位置关系是 (2)探究证明:将图1中的CDE绕着点C顺时针旋转(090),得到图2,AE与MP、BD分别交于点G、H,判断PMN的形状,并说明理由;(3)拓展延伸:把CDE绕点C任意旋转,若AC=4,CD=2,请直接写出PMN面积的最大值22(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元152025y/件252015已知日销售量y是销售价x的一次函数求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23(8

9、分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?24(10分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积25(10分)列方程解应用题:某景

10、区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?26(12分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN27(12分)如图,AB为O的直径,点C在O上,ADCD于点D,且AC平分DAB,求证:(1)直线DC是O的切线;(2)AC2=2ADAO参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据题意,结合图形,分两种情况讨论

11、:AB为等腰ABC底边;AB为等腰ABC其中的一条腰【详解】如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的C点有2个;AB为等腰直角ABC其中的一条腰时,符合条件的C点有4个故选:C【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解数形结合的思想是数学解题中很重要的解题思想2、A【解析】由EB=CF,可得出EF=BC,又有A=D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明ABCDEF,那么添加的条件与原来的条件可形成SSA,就不能证明ABCDEF了【详解】EB=CF,EB+BF=CF+BF,即EF=BC,又A=D

12、,A、添加DE=AB与原条件满足SSA,不能证明ABCDEF,故A选项正确B、添加DFAC,可得DFE=ACB,根据AAS能证明ABCDEF,故B选项错误C、添加E=ABC,根据AAS能证明ABCDEF,故C选项错误D、添加ABDE,可得E=ABC,根据AAS能证明ABCDEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角3、A【解析】【分析】根据众数和中位数的定义进行求解即可得【详解】这

13、组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.4、C【解析】根据负数的绝对值是它的相反数,可得答案【详解】-=,A错误;-=,B错误;=,D错误;=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.5、C【解析】解:设该商品的进价为x元/件,依题意得:(x+20)=200,解得:x=1该商品的进价为1元/件故选C6、B【解析】根据的图象上的三点,把三点代入可以得到x1 ,x1 ,x

14、3,在根据a的大小即可解题【详解】解:点A(x1,1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,x1 ,x1 ,x3 ,a1,a10,x1x3x1故选B【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断7、A【解析】本题首先利用A点恰好落在边CD上,可以求出ACBC1,又因为AB可以得出ABC为等腰直角三角形,即可以得出ABA、DBD的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA和面积DAD【详解】先连接BD,首先求得正方形ABCD的面积为,由分析可以求出ABADBD45,即可以求得扇形ABA的面积为,扇形BDD的面积为,

15、面积ADA面积ABCD面积ABC扇形面积ABA;面积DAD扇形面积BDD面积DBA面积BAD,阴影部分面积面积DAD+面积ADA【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.8、C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.9、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象

16、问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.10、B【解析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2=,解得R=3cm;设圆锥底面半径为rcm,则2=2r,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.11、C【解析】代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+M2018N2018中即可求出结论【详解】解:当y=0时,有(x-)(x-)=0,解得:x1=,x2=,MaNa=-,M1N1+M2N

17、2+M2018N2018=1-+-+-=1-=故选C【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键12、D【解析】根据题意判定ADEABC,由相似三角形的面积之比等于相似比的平方解答【详解】如图,在ABC中,DEBC,ADEABC,若1ADAB,即时,此时3S1S1+SBDE,而S1+SBDE1S1但是不能确定3S1与1S1的大小,故选项A不符合题意,选项B不符合题意若1ADAB,即时,此时3S1S1+SBDE1S1,故选项C不符合题意,选项D符合题意故选D【点睛】考查了相似三角形的判定与

18、性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形二、填空题:(本大题共6个小题,每小题4分,共24分)13、50【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得A=ABD,然后表示出ABC,再根据等腰三角形两底角相等可得C=ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】MN是AB的垂直平分线,AD=BD. A=ABD.DBC=15,ABC=A+15.AB=AC,C=ABC=A+15.A+A+15+

19、A+15=180,解得A=50故答案为5014、x1且x1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论【详解】根据题意,得:,解得:x1且x1故答案为x1且x1【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负15、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同

20、,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,能让两盏灯泡同时发光的概率,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比16、2【解析】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2r=,解得r=2cm考点:圆锥侧面展开扇形与底面圆之间的关系17、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,AE1:AC=1:(n+1),SABE1:SABC=

21、1:(n+1),SABE1=,SABM:SABE1=(n+1):(2n+1),SABM:=(n+1):(2n+1),Sn=故答案为18、【解析】画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得【详解】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答

22、应写出文字说明、证明过程或演算步骤19、(1)()1+=+()1;(1)()1+=+()1;(3)成立,理由见解析;成立,理由见解析【解析】(1)根据题目中的等式列出相同特征的等式即可;(1)根据题意找出等式特征并用n表达即可;(3)先后证明左右两边的等式的结果,如果结果相同则成立;先证明等式是否成立,如果成立再根据等式的特征写出m,n至少有一个为无理数的等式.【详解】解:(1)具有上述特征的等式可以是()1+=+()1,故答案为()1+=+()1;(1)上述等式可表示为()1+=+()1,故答案为()1+=+()1;(3)等式成立,证明:左边=()1+=+=,右边=+()1=,左边=右边,等

23、式成立;此等式也成立,例如:()1+=+()1【点睛】本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征.20、(1)ADE=90;(2)ABE的周长=1【解析】试题分析:(1)是线段垂直平分线的做法,可得ADE=90(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以ABE的周长为AB+BE+AE=AB+BC=1试题解析:(1)由题意可知MN是线段AC的垂直平分线,ADE=90;(2)在RtABC中,B=90,AB=3,AC=5,BC=4,MN是线段AC的垂直平分线,AE=CE,ABE的周长=AB+(AE+BE)=AB+BC=3+4=1考点:1、尺规作图;2、

24、线段垂直平分线的性质;3、勾股定理;4、三角形的周长21、(1)PM=PN,PMPN(2)等腰直角三角形,理由见解析(3) 【解析】(1)由等腰直角三角形的性质易证ACEBCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PMPN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【详解】解:(1)PM=PN,PMPN,理由如下:延长AE交BD于O,ACB和ECD是等腰直

25、角三角形,AC=BC,EC=CD,ACB=ECD=90在ACE和BCD中,ACEBCD(SAS),AE=BD,EAC=CBD,EAC+AEC=90,AEC=BEO,CBD+BEO=90,BOE=90,即AEBD,点M、N分别是斜边AB、DE的中点,点P为AD的中点,PM=BD,PN=AE,PM=PM,PMBD,PNAE,AEBD,NPD=EAC,MPA=BDC,EAC+BDC=90,MPA+NPC=90,MPN=90,即PMPN,故答案是:PM=PN,PMPN;(2)如图中,设AE交BC于O,ACB和ECD是等腰直角三角形,AC=BC,EC=CD,ACB=ECD=90,ACB+BCE=ECD+

26、BCE,ACE=BCD,ACEBCD,AE=BD,CAE=CBD,又AOC=BOE,CAE=CBD,BHO=ACO=90,点P、M、N分别为AD、AB、DE的中点,PM=BD,PMBD,PN=AE,PNAE,PM=PN,MGE+BHA=180,MGE=90,MPN=90,PMPN;(3)由(2)可知PMN是等腰直角三角形,PM=BD,当BD的值最大时,PM的值最大,PMN的面积最大,当B、C、D共线时,BD的最大值=BC+CD=6,PM=PN=3,PMN的面积的最大值=33=【点睛】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题

27、的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题22、();()此时每天利润为元【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,;()将代入()中函数表达式得:,利润(元),答:此时每天利润为元23、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平24、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利用切线的性质得COCD,则ADCO,

28、所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接OC,如图,CD与O相切于点E,COCD,ADCD,ADCO,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60,S阴影=SCOES扇形COB=33【点睛

29、】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式25、15天【解析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可试题解析:设工程期限为x天根据题意得,解得:x=15.经检验x=15是原分式方程的解答:工程期限为15天.26、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解

30、析:在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NFE,RtAMERtFNE,AM=FN,MB=CN.27、(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分DAB知OAC=OCA=DAC,据此知OCAD,根据ADDC即可得证;(2)连接BC,证DACCAB即可得详解:(1)如图,连接OC,OA=OC,OAC=OCA,AC平分DAB,OAC=DAC,DAC=OCA,OCAD,又ADCD,OCDC,DC是O的切线;(2)连接BC,AB为O的直径,AB=2AO,ACB=90,ADDC,ADC=ACB=90,又DAC=CAB,DACCAB,即AC2=ABAD,AB=2AO,AC2=2ADAO点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁