《甘肃省广河县重点中学2022-2023学年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省广河县重点中学2022-2023学年中考联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,BDAC,BE平分ABD,交AC于点E,若A=40,则1的度数为()A80B70C60D402下图是某几何体的三视图,则这个几何体是( )A棱柱B圆柱C棱锥D圆锥3已知抛物线c:y=x2+2x3,将抛物线c平移得到抛物线c,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A将抛物线c沿x轴向右平移个单位得到抛物线cB将抛物线c沿x轴向右平移4个单位得到抛物线cC将抛物线c沿x轴向右平移个单位得到抛物线cD将抛物线c沿x轴向右平移6个单位得到抛物线c4实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )Aa2Ba3Ca
3、bDab5将不等式组的解集在数轴上表示,下列表示中正确的是( )ABCD6如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定7对于点A(x1,y1),B(x2,y2),定义一种运算:例如,A(5,4),B(2,3),若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A在同一条直线上 B在同一条抛物线上C在同一反比例函数图象上 D是同一个正方形的四个顶点8能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da9tan30的值为()ABCD10某市2010年元旦这天的最高气温是8,最低气温是2,则这天的最高气温比最低气温高
4、()A10B10C6D6二、填空题(本大题共6个小题,每小题3分,共18分)11点G是三角形ABC的重心,那么 =_12分解因式:_13在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:两人相遇前,甲的速度小于乙的速度;出发后1小时,两人行程均为10km;出发后1.5小时,甲的行程比乙多3km;甲比乙先到达终点其中正确的有_个14已知:如图,AB为O的直径,点C、D在O上,且BC6cm,AC8cm,ABD45则图中阴影部分的面积是_. 15比较大小:_116如图所示,一动点从半径为2的O上的A0点出发,沿着射线A0O方向
5、运动到O上的点A1处,再向左沿着与射线A1O夹角为60的方向运动到O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到O上的点A3处,再向左沿着与射线A3O夹角为60的方向运动到O上的点A4处;A4A0间的距离是_;按此规律运动到点A2019处,则点A2019与点A0间的距离是_三、解答题(共8题,共72分)17(8分)如图1,OABC的边OC在y轴的正半轴上,OC3,A(2,1),反比例函数y (x0)的图象经过点B(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y (x0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,求直线BD的解析式;求线段ED
6、的长度 18(8分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出时,的取值范围;(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由19(8分)如图,在四边形ABCD中,ABDC,ABAD,对角线AC,BD交于点O,AC平分BAD,过点C作CEAB交AB的延长线于点E,连接OE求证:四边形ABCD是菱形;若AB,BD2,求OE的长20(8分)计算:()-1+()0+-2cos3021(8分)4件同型号的产品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进
7、行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?22(10分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30,OAC=75,AO=,BO:CO=1:3,求AB的长经过社团成员讨论发现,过点B作BDAC,交AO的延长线于点D,通过构造ABD就可以解决问题(如图2)请回答:ADB= ,AB= 请参考以上解决思路,解决问题:如
8、图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75,BO:OD=1:3,求DC的长23(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围
9、;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24如图,ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出ABC向左平移5个单位长度后得到的ABC; 请画出ABC关于原点对称的ABC; 在轴上求作一点P,使PAB的周长最小,请画出PAB,并直接写出P的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据平行线的性质得到根据BE平分ABD,即可求出1的度数【详解】解:BDAC,BE平分ABD,故选B
10、【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键2、D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥故选D【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识3、B【解析】抛物线C:y=x2+2x3=(x+1)24,抛物线对称轴为x=1抛物线与y轴的交点为A(0,3)则与A点以对称轴对称的点是B(2,3)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(4,3),因此将
11、抛物线C向右平移4个单位故选B4、D【解析】试题分析:A如图所示:3a2,故此选项错误;B如图所示:3a2,故此选项错误;C如图所示:1b2,则2b1,又3a2,故ab,故此选项错误;D由选项C可得,此选项正确故选D考点:实数与数轴5、B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可解:不等式可化为:,即在数轴上可表示为故选B“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示6、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以
12、CD=3AC.【详解】AB=CD,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点7、A。【解析】对于点A(x1,y1),B(x2,y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又,。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,互不重合的四点C,D,E,F在同一条直线上。故选A。8、A【解析】将各选
13、项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.9、D【解析】直接利用特殊角的三角函数值求解即可【详解】tan30,故选:D【点睛】本题考查特殊角的三角函
14、数的值的求法,熟记特殊的三角函数值是解题的关键10、A【解析】用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10即这天的最高气温比最低气温高10故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据题意画出图形,由,根据三角形法则,即可求得的长,又由点G是ABC的重心,根据重心的性质,即可求得【详解】如图:BD是ABC的中线,=,=,点G是ABC的重心,=,故答案为: 【点睛】本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其
15、几何意义,是基础题目12、 (a+1)(a-1)【解析】根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.13、1【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故错误;由图可得,两人在1小时时相遇,行程均为10km,故正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5
16、小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故正确14、()cm2 【解析】S阴影=S扇形-SOBD= 52-55=.故答案是: .15、【解析】先将1化为根号的形式,根据被开方数越大值越大即可求解【详解】解: , ,故答案为【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较16、 1 【解析】据题意求得A0A14,A0A1,A0A31,A0A4,A0A51,A0A60,A0A74,于是得到A1019与A3重合
17、,即可得到结论【详解】解:如图,O的半径1,由题意得,A0A14,A0A1,A0A31,A0A4,A0A51,A0A60,A0A74,101963363,按此规律A1019与A3重合,A0A1019A0A31,故答案为,1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键三、解答题(共8题,共72分)17、(1)B(2,4),反比例函数的关系式为y;(2)直线BD的解析式为yx6;ED2 【解析】试题分析:(1)过点A作APx轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;(2)先求出直线OA的解析式
18、,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; 先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.试题解析:(1)过点A作APx轴于点P,则AP1,OP2,又ABOC3,B(2,4).,反比例函数y (x0)的图象经过的B,4,k8.反比例函数的关系式为y;(2)由点A(2,1)可得直线OA的解析式为yx解方程组,得,点D在第一象限,D(4,2)由B(2,4),点D(4,2)可得直线BD的解析式为yx6;把y0代入yx6,解得x6,E(6,0),过点D分别作x轴的垂线,垂足分别为G,则G(4,0),由勾股定理可得:
19、ED.点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.18、(1); ;(2)或;(3)存在,或或或【解析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分、三种情况讨论,即可得出结论【详解】(1)一次函数与反比例函数,相交于点,把代入得:,反比例函数解析式为,把代入得:,点C的坐标为,把,代入得:,解得:,一次函数解析式为;(2)根据函数图像可知:当或时,一次函数的图象在反比例函数图象的上方,当或时,;(3)存在或或或时,为等腰三角形,理由如
20、下:过作轴,交轴于,直线与轴交于点,令得,点A的坐标为,点B的坐标为,点D的坐标为,当时,则,点P的坐标为:、;当时,是等腰三角形,平分,点D的坐标为,点P的坐标为,即;当时,如图:设,则,在中,由勾股定理得:,解得:,点P的坐标为,即,综上所述,当或或或时,为等腰三角形【点睛】本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论19、(1)见解析;(1)OE1【解析】(1)先判断出OAB=DCA,进而判断出DAC=DAC,得出CD
21、=AD=AB,即可得出结论;(1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论【详解】解:(1)ABCD,OABDCA,AC为DAB的平分线,OABDAC,DCADAC,CDADAB,ABCD,四边形ABCD是平行四边形,ADAB,ABCD是菱形;(1)四边形ABCD是菱形,OAOC,BDAC,CEAB,OEOAOC,BD1,OBBD1,在RtAOB中,AB,OB1,OA1,OEOA1【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键20、4+2【解析】原式第一项利用负指数幂法则计算,第
22、二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果【详解】原式=3+1+3-2=4+221、(1);(2);(3)x=1【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)4件同型号的产品中,有1件不合格品,P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=;(3)大量重复试验后发现,抽到合格品的频率稳定在0.95,抽到合格品的概率等于0
23、.95, =0.95,解得:x=1【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法22、(1)75;4;(2)CD=4【解析】(1)根据平行线的性质可得出ADB=OAC=75,结合BOD=COA可得出BODCOA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出ABD=75=ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BEAD交AC于点E,同(1)可得出AE=4,在RtAEB中,利用勾股定理可求出BE的长度,再在RtCAD中,利用勾股定理可求出DC的长,此题得解【详解】解:(1)BDAC,ADB=OAC=75BOD=COA,BO
24、DCOA,又AO=3,OD=AO=,AD=AO+OD=4BAD=30,ADB=75,ABD=180-BAD-ADB=75=ADB,AB=AD=4(2)过点B作BEAD交AC于点E,如图所示ACAD,BEAD,DAC=BEA=90AOD=EOB,AODEOB,BO:OD=1:3,AO=3,EO=,AE=4ABC=ACB=75,BAC=30,AB=AC,AB=2BE在RtAEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,AB=AC=8,AD=1在RtCAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4【点睛】本题考查了相似三角形的性质、等腰三角形
25、的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度23、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=,然后可以得到函数的增减性,
26、再结合已知条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而减小,即当卖的只数越多时,利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利润最大故店家一次应卖45只,最低售价为16.5
27、元,此时利润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论24、(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点【详解】(1)A1B1C1如图所示;(2)A2B2C2如图所示;(3)PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用